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Abstract 
 
This study examines the productivity of smallholder groundnut farmers in North-eastern Mozambique 
using data for 2016 from two provinces with high total production of said crop. The model used is a 
Cobb-Douglas True Fixed Effects stochastic production frontier, controlling for geographical 
heterogeneity, and standard errors clustered at the village level. Our analysis reveals a mean total 
factor productivity index and technical efficiency score of 0.34 and 0.68 respectively. Seeding rates 
are found to have major potential for increasing output. This work provides new information to 
support ongoing efforts to generate greater resilience and robustness in domestic food systems. 
 
Key words: stochastic production frontiers; total factor productivity; technical efficiency; groundnut; 
Mozambique 
 
1. Background 
 
Many regions and countries throughout the world rely on agriculture as a primary driver of their 
economies (World Bank 2007; DeJanvry & Sadoulet 2020). In sub-Saharan Africa (SSA), 
agriculture-based economies are predominant and economic development planning is often tied to 
agricultural productivity growth. This study focuses on the agricultural sector in Mozambique, which 
contributes 23.4% to gross domestic product (GDP), employs 80% of the workforce, and is dominated 
by smallholders who produce 95% of total farm output (USAID 2018). Although agriculture 
contributes significantly to the Mozambican economy, only 20% of total production exits the farm 
gate (USDA 2015). Even with 80% of agricultural production dedicated to staple crops for direct 
household consumption, smallholder production does not meet domestic needs, and food insecurity 
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and undernourishment have remained prevalent (USAID 2019). To address these challenges, the 
Mozambican Ministry of Agricultural and Food Security [Ministério da Agricultura e Segurança 
Alimentar (MASA)] has conducted several studies and implemented comprehensive plans to boost 
agricultural production, most recently with the conclusion of the National Agricultural Investment 
Plan [Plano de Investimento no Sector Agrário (PNISA)] implemented from 2013 to 2017, under the 
decade-long Plano Estratégico para o Desenvolvimento do Sector Agrário (PEDSA: 2010–2020) 
(MASA 2017a). 
 
According to pillar (i) of PEDSA, “Agricultural Production, Productivity and Competitiveness” 
(MASA 2017b), productivity is one of the plan’s four primary targets. However, apart from official 
reporting, there has been limited rigorous investigation of agricultural productivity in Mozambique 
(Uaiene 2008; Farahane 2009; Cunguara 2011). Thus, an examination of existing production systems 
to track total factor productivity (TFP) and technical efficiency (TE) makes an important contribution 
to the literature. This type of targeted study of smallholder production systems provides useful 
information to policymakers and key stakeholders. At a time when production and productivity 
growth figure significantly in critical policy aims, there is a great demand for analysis from diverse 
stakeholders to develop future strategies, particularly in the light of global climate change and the 
ongoing COVID-19 pandemic (Barrett 2020). Moreover, greater domestic production constitutes a 
well-established strategy to mitigate food security risks stemming from climatic adversity (e.g. 
drought), which is a major concern in Mozambique (World Bank 2011; Arndt & Thurlow 2015; 
Salazar-Espinoza et al. 2015; CIAT & World Bank 2017; Ahmadalipour et al. 2019; Salazar et al. 
2019).  
 
Household (HH) strategies to expand production fall into two general categories: extensification and 
intensification. Cropland in Mozambique reaches 5.9 million hectares (ha), with 4.7 million ha (80%) 
farmed (FAOSTAT 2019); therefore, extensification is a longstanding strategy to increase domestic 
production (e.g. Tschirley & Benfica 2001). In the past, the traditional practices and land tenure 
policies that were implemented following independence and the long period of civil war made it 
challenging for smallholders to increase the area under production and for outside interests to 
capitalise on large tracts of open agricultural land (Arndt et al. 2000; DeBrauw 2015). Over recent 
decades, state institutions have worked to reduce constraints to land access and to provide additional 
support to smallholders on the land they currently farm (Hanlon 2004). These programmes have 
explicitly targeted intensification based on evidence of significant productivity gains from improved 
management (MASA 2017a). In particular, investments in agricultural research and extension 
services have been made to increase agricultural productivity and total domestic production 
(Cunguara & Moder 2011). Correspondingly, a joint approach of extensification and intensification 
has been adopted to increase output. Given these aims, additional research on agricultural productivity 
in Mozambique is warranted. Thus, this study focuses on a sample of groundnut farmers in the North- 
eastern provinces of Cabo Delgado and Nampula to examine smallholder productivity.  
 
Groundnuts have received attention from various stakeholders as a highly nutritious foodstuff that 
contributes to a diverse crop portfolio and enhances soil health and fertility when used in rotations 
and intercropping (CNFA & USAID 2010; Waha et al. 2013; Salazar-Espinoza et al. 2015). Notably, 
groundnuts are a source of zinc and protein, essential nutrients that appear to be declining in the food 
supply due to increased atmospheric carbon dioxide (CO2) (Wessells & Brown 2012; Myers et al. 
2015; Medek et al. 2017; Beach et al. 2019). Leguminous crops like groundnuts have been promoted, 
given the limited availability of chemical fertiliser and the low adoption rates of the crop in the region 
(2% to 3%) (Benson et al. 2012). Furthermore, these crops are projected to benefit from increased 
atmospheric CO2, with greater yield and nitrogen fixing in the soil (Burkey et al. 2007; Rogers et al. 
2009). Risk from disease (e.g. groundnut rosette virus), low output-to-seed ratio, and complexity of 
cultivation compared to other crops have worked against the decision to grow groundnuts (Naidu et 
al. 1999, DeBrauw 2015). Groundnuts are grown by 32% of HHs on 390 000 ha in Mozambique, 
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primarily for home consumption, with the greatest production levels in Nampula province (MASA 
2017b). 
 
Productivity measurement and analysis in agriculture have consistently revealed the importance of 
decision-making by farm managers who seek to maximise output, given their technology, input set 
and environment (Bravo-Ureta et al. 2007). TFP and TE measures provide useful benchmarks to 
compare potential output with realised production levels across farm samples. In contrast to simple 
production metrics (e.g. output and yield), TFP and TE indicators allow stakeholders to plan and 
implement effective strategies to generate productivity growth. For instance, high mean TE may 
suggest that the best strategy for productivity growth is to invest in research and development that 
generates new technologies and spurs technological change. In SSA, research on TFP and TE has 
included over 400 studies published from 1984 to 2013 (Bravo-Ureta & Pinheiro 1993; Bravo-Ureta 
et al. 2007; Ogundari 2014; Bravo-Ureta et al. 2017). These studies demonstrate the importance of 
measurement to track and develop strategies to further enhance productivity growth. Moreover, given 
the wide heterogeneity across farming systems and geographical locations, it is critical to develop 
productivity measurements that are country- and even site-specific.  
 
In Mozambique, several studies over recent decades incorporate groundnuts into their analysis or list 
them as an important staple crop (Tschirley & Benfica 2001; Carter et al. 2014; DeBrauw 2015; 
Salazar-Espinoza et al. 2015; Deininger & Xia 2016; Benfica et al. 2017). However, productivity 
analysis in these studies rely on simple measures, mainly yield and total value of output. We only 
found a single case that applies stochastic production frontier methodology to examine farm-level TE 
(Uaiene 2008) in Mozambique, while a few studies have used country-level data to examine aggregate 
TFP growth (e.g. Nkamleu 2004; Coelli & Rao 2005; Avila & Evenson 2010). Hence, given the 
dearth of micro-productivity analyses for Mozambique, additional research is warranted. The 
rationale for this paper was therefore to generate new evidence that may be used to motivate future 
research and interventions by policymakers and funding agencies. The remainder of this paper is 
structured as follows: the methods section describes the econometric framework, data and estimation 
strategy used in the analysis; then we present the results and discussion; and, finally, the summary 
and conclusions. 
 
2. Methods 
 
2.1 Econometric framework 
 
We consider a production model in which traditional agricultural inputs – land, labour and seeds – 
are combined to produce groundnuts. The main approach to productivity analysis taken here assumes 
that firms maximise expected profits, which provides the rationale for estimating production frontier 
models where inputs are predetermined, thus avoiding the simultaneity bias issue (Zellner et al. 1966; 
Karagiannis & Kellermann 2019; Bravo-Ureta et al. 2020). Maximum likelihood estimation (MLE) 
is the preferred methodology used to fit stochastic production frontiers (SPFs) (Greene 2003). The 
SPF model has gained great popularity in various economic sectors (Greene 2008), including 
agriculture (Ogundari 2014). More recently, stochastic production frontiers have been used by a 
number of authors in the measurement and decomposition of TFP, including O’Donnell (2016), Njuki 
et al. (2018), and Julien et al. (2019). 
 
This paper assumes a Cobb-Douglas (C-D) functional form for all models estimated below. The C-D 
is selected because it is a good approximation of the unknown true production function and it satisfies 
theoretically based curvature properties globally (O’Donnell 2016, 2018). Furthermore, the ‘proper’ 
TFP index developed by O’Donnell (2016), used here, is based on the C-D. More flexible functional 
forms like the transcendental logarithmic (translog) are less restrictive (e.g. variable elasticities of 
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substitution), but violate global curvature properties. In addition, C-D and translog estimates typically 
provide similar TE estimates (Baccouche & Kouki 2003; Ogundari 2014; Bravo-Ureta et al. 2020).  
 
The general C-D SPF model for cross-sectional data can be expressed as follows (Aigner et al. 1977): 
 
𝑌! = 𝑓(𝑋!) +	𝑣! − 𝑢!,                       (1)  
 
where 𝑌! is the natural log of observed output, 𝑋! are natural logs of inputs, 𝑣! is the standard normally 
distributed error term, N(0,	𝜎"#), and 𝑢! is the one-sided term representing technical inefficiency. The 
literature includes alternative specifications for the distribution of 𝑢!, although the half-normal 
distribution is the most popular option (Coelli et al. 2005). For the half-normal distribution, the 
expected value of 𝑢!, conditional on the composed error term 𝜀! =	𝑣! − 𝑢!, is: 
 

𝐸[𝑢!|𝜀!] =
$%

('(%!)
2*+𝜀!𝜆,𝜎-
.(/0"%|$)

− 0"%
$
4,                     (2) 

 
where 𝜎 = [𝜎2# + 𝜎"#]'/#, 𝜆 = 𝜎2 𝜎"5 , 𝜙(∙) is the density of the standard normal distribution, and Φ(∙) 
is the cumulative density function (Jondrow et al. 1982). The TE of the 𝑖th unit, HHs in our case, is 
defined as the ratio of observed (𝑌!) and frontier (𝑌*) output, given by: 
 
𝑇𝐸! = 𝑒𝑥𝑝(−𝑢!).                                                                                           (3)  
 
Another important productivity indicator, shown in equation 4, is TFP. In general, TFP is defined as 
the ratio of total outputs to total inputs, which for HH 𝑖 can be expressed as: 
 
 𝑇𝐹𝑃! =

4"
5(5")

,                                               (4) 
 
where 𝑌! is total output and 𝑋(𝑋!) is aggregate input. Parameter estimates from the C-D SPF are used 
as weights to aggregate inputs. Another critical advantage of the C-D functional form is that it satisfies 
axiomatic properties associated with TFP indexes that allow for consistent comparisons between HHs 
(O’Donnell 2018). Based on our model, the TFP for HH 𝑖 and 𝑚 regressors is denoted as:  
 
𝑇𝐹𝑃6(𝑦! , 𝑥!) = D∏ F𝑥7!

8#"/9#G6
7:' H × [𝑒𝑥𝑝(𝑢!)] 	× [𝑒𝑥𝑝(𝑣!)].               (5) 

 
The first right-hand-side (rhs) term in equation (5) measures output-oriented scale and mix efficiency, 
capturing fluctuations in TFP due to economies of scale and input adjustments. The second 
component measures output-oriented TE, which measures productivity change due to movements 
toward or away from the frontier. The last component is statistical noise, which accounts for errors 
and other unknown factors. The TFP index (TFPI) is then calculated by dividing TFPi by a reference 
TFP value 𝑟 from the sample, i.e. TFPIi = TFPi / TFPr. If the HH with maximum TFP is used as the 
reference point, i.e. TFPIi = TFPi / TFPmax (as in equation 6), then TFPI values fall into the [0, 1] 
interval. The TFPI for our model is denoted as (O’Donnell 2016, 2018): 
 

𝑇𝐹𝑃𝐼6(𝑦! , 𝑦; , 𝑥! , 𝑥;) = L∏ M
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where the rhs components are sub-indices representing output-oriented scale and mix efficiency, 
output-oriented TE and statistical noise, respectively. 
 



AfJARE Vol 15 No 4 December 2020  Jelliffe et al. 
 

293 

2.2 Controlling for spatial heterogeneity with ‘true’ fixed effects 
 
Heterogeneity between HHs is driven by observable and unobservable factors. In a ‘pooled’ model 
(see equation 8), these factors are captured by an intercept term and white noise (𝑣!) in the composed 
error. In certain cases, it is possible to exploit the data structure to capture unobserved heterogeneity 
by incorporating time and/or spatial effects. Below we incorporate fixed effects into an SPF model 
as an alternative to a ‘pooled’ specification, which is referred to as the true fixed effects (TFE) model, 
and disaggregate the intercept term to capture unobserved heterogeneity. Given the cross-sectional 
nature of our data, we control for spatial heterogeneity between 𝑖 HHs in 𝑙 regions. The TFE model 
includes a dummy variable for each district to capture unobserved heterogeneity (e.g. climate, 
leadership, infrastructure). Note that equation (7), the TFE version of (1), incorporates district dummy 
variables (𝐹?), while 𝑣!? 	and	𝑢!? 	are HH (i) and district (l) specific, and is expressed as: 
 
𝑌!? = 𝑓(𝑋!? , 𝐹?) +	𝑣!? − 𝑢!?.                                     (7) 
 
The TFE is estimated using MLE according to the methodology in Greene (2005). The TFE estimator 
is ‘distribution free’ – an appealing characteristic. A drawback of earlier FE estimators used in TE 
analysis (e.g. Schmidt & Sickles 1984) is that TE comparisons between individual units were based 
on the best-in-sample value as a reference point. The TFE model handles this drawback by 
incorporating the inefficiency term 𝑢!? in the frontier structure. A possible concern with TFE 
estimation is the incidental parameters problem (Greene 2005), which arises from inconsistent 
variance estimates, which are critical in post-estimation of the inefficiency term (Belotti & Ilardi 
2018). However, this is typically an issue for short panels and is therefore not of concern given our 
data. 
 
2.3 Data  
 
The data used in this study were collected as part of ongoing multi-country efforts supported by the 
United States Agency for International Development (USAID) to enhance the productivity of 
agricultural systems in least developed countries. Under the Feed the Future initiative, USAID 
Innovation Labs have targeted multiple crops depending on site-specific characteristics while aiming 
to enhance food security. The Peanut and Mycotoxin Innovation Lab (PMIL) was in operation from 
2012 to 2017 following prior efforts to support peanut (i.e. groundnut) growers under the USAID 
Peanut Collaborative Research Support Program (CRSP) from 1996 to 2012 (Hoisington 2018). 
Participating PMIL countries included Haiti, Ghana, Malawi, Mozambique and Zambia. Partner 
agencies, usually under the respective national ministries of agriculture, provided institutional support 
and facilitated engagement with key stakeholders, including universities, research centres, 
agricultural producers and local consultants, particularly for in-country data collection.  
 
PMIL activities varied by country, with initiatives including research on good management practices 
to enhance yield and reduce the likelihood of fungal contamination (i.e. formation of harmful 
aflatoxins); plant breeding to generate new varieties that are high yielding, drought and disease 
resistant, while maintaining other desirable characteristics that are likely to affect HH adoption and 
marketability; human capacity building by funding research and graduate students at partner agencies 
and universities, as well as providing training via agricultural extension, including expert visits and 
farmer field trials; and data collection for areas identified by experts as critical to the project mission 
(Hoisington 2018 and https://ftfpeanutlab.caes.uga.edu). 
 
For this study, partners at the Mozambique Agricultural Research Institute (MARI), also known as 
Instituto de Investigação Agrária de Moçambique (IIAM), facilitated the collection of primary data 
from groundnut producers in Northern Mozambique. Researchers have highlighted the low 
availability of inputs, which is a primary constraint to agricultural productivity North of the Zambezi 
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River due to the lack of infrastructure (e.g. roads), which greatly limits access to markets in the South 
(Cirera & Arndt 2008; Mabiso et al. 2014). The Northern region was selected by local experts because 
of the large proportion of HHs that grow groundnuts and a lack of available data for this population. 
A version of the survey instrument, adapted from an earlier study conducted in Ghana, was distributed 
prior to in-country meetings in early June 2016. During these June meetings, the research team 
reviewed and adjusted the instrument according to expert opinion and pilot testing with local 
producers. A team of trained enumerators conducted the survey in North-eastern Mozambique in June 
and July 2016.  
 
Researchers at MARI selected two provinces, Nampula and Cabo Delgado, as the study location. In 
Mozambique, provinces are divided into districts, which are further split into administrative posts, 
followed by localities and villages (or communities). The sampling unit in this study is a HH located 
in a given village. Additional village information was collected using a separate questionnaire 
administered by the field supervisor to village leaders. Given resource availability, a multistage 
approach for sample selection was taken, randomising at the district, locality and village levels. The 
sample design consisted of four districts, two per province; sixteen localities, four per district; and 
thirty-two villages, two per locality. Given the target of 400 HH interviews, 12 or 13 HHs were 
surveyed in each village, with 25 surveyed per locality. Data were cross-checked by a field supervisor 
during the survey visit. The final sample used for the analysis includes 232 HHs that reported all the 
data required for the estimation of the groundnut production models. In terms of geography, the final 
sample is evenly distributed among the provinces, districts, localities and villages, with 50.4% of the 
sample located in Nampula province (22.8% in Memba and 27.6% in Mogovolas district). The 
remaining 49.6% of the sample comes from Cabo Delgado province (24.6% in Chiure and 25% in 
Balama district) (Table 1). 
 
Table 1: Household and production variables: Definitions and type  

Variable  Definition  Type Mean 
Demographic    
AGE HHH age Discrete 38.7 
SEX HHH sex (0 = male, 1 = female) Dummy 0.11 
MSTAT HHH marital status (1 = single, 2 = married, 3 = widowed, 4 = divorced) Dummy  
1   0.03 
2   0.90 
3   0.04 
4   0.04 
EDU HHH education (1 = no formal, 2 = primary, 3 = primary+) Dummy  
1   0.32 
2   0.62 
3   0.06 
SIZE_HH HH members Discrete 5.16 
SIZE_AE HH adult male equivalents (0.5 = child; 0.8 = ad. female; 1 = ad. male)  Continuous 3.48 
DIST District (1 = Memba, 2 = Mogovolas, 3 = Chiure, 4 = Balama) Dummy  
1   0.228 
2   0.276 
3   0.246 
4   0.250 
Production    
𝑌  Groundnut production output (kg) Continuous 474.4 
YIELD Groundnut yield (kg/ha) Continuous 681.4 
FARMSIZE Farm area (ha) Continuous 2.70 
X1 Groundnut area (ha) Continuous 0.71 
X2 Groundnut labour (MHr)* Continuous 149.6 
X3 Groundnut seed planted (kg) Continuous 21.7 
N = 232    

* Calculated using adult male equivalents 
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2.4 Descriptive statistics 
 
Table 1 presents HH demographic and production statistics for the sample of smallholders analysed 
in this study. Household heads (HHHs) in the sample were on average 38.7 years old; 88.8% were 
male and 11.2% female; 89.6% were married and the remaining 10.4% were either single (2.6%), 
widowed (3.9%) or divorced (3.9%). No formal education was reported by 32.3% of HHHs, while 
the remaining 67.7% of HHHs indicated a minimum of primary education (62.1%) or greater (5.6%). 
Average HH size was 5.16 members, composed of 3.48 adult male equivalents, derived by assigning 
weights to HH members based on their age and gender to get an idea of labour availability. The 
weights used are: adult males (16 years or more) = 1.0; adult females (16 years or more) = 0.8; and 
children (younger than 16 years) = 0.5 (Dillon & Hardaker 1989). 
 
Total groundnut output (𝑌) ranged from 50 to 3 450 kg, with a mean of 474 kg (Table 1), and yield 
ranged from 171 to 1 767 kg/ha, with an average of 681 kg/ha. Farm size ranged from 0.4 to 15.25 
ha, with a mean of 2.69 ha. Area planted with groundnuts (𝑋1) averaged 0.713 ha. Labour was 
measured in hours of adult male equivalents (MHr), calculated as explained above and summed over 
all activities. Average HH labour input for groundnut farming (𝑋2) was 149.65 MHr. On average, 
HHs use 21.72 kg of groundnut seed (𝑋3). 
 
2.5 Empirical model 
 
The empirical C-D model is specified as total groundnut output (𝑌!) for HH 𝑖 as a function of a set of 
𝑚 traditional inputs (𝑋7!), namely groundnut area (ha), labour (MHr), and seed planted (kg). The 
estimates from the C-D were compared with those obtained from translog estimates and the results 
support the C-D.1 Comparisons of restricted and unrestricted versions of the model (the latter includes 
additional covariates) show that the restricted specification is preferred based on statistical tests.2 
Given the underlying structure of the data, standard errors are clustered at the village for all models 
to control for intra-village similarities between HHs (Moulton 1990). 
 
The first empirical specification is a pooled C-D SPF model, denoted as: 
 
𝑙𝑛(𝑌!) = 𝛼@ + ∑ 𝛽7𝑙𝑛𝑋7!6

7:' + 𝑣! − 𝑢!,                      (8) 
 
where the following parameters were estimated: intercept 𝛼@, 𝛽7 for traditional inputs, and the error 
term composed of white noise, 𝑣!, and the inefficiency term 𝑢!. As is well known, the 𝛽7 parameters 
from a C-D production frontier are partial elasticities of production. The calculations of TE and TFP 
are based on the general expressions shown in equations (3) and (5) respectively.  
 
The next model includes fixed effects, 𝐹?, to account for regional heterogeneity at the district level, 
and the expression for the C-D SPF true fixed effects specification is: 
 
𝑙𝑛(𝑌!?) = ∑ 𝛽7𝑙𝑛𝑋7!?6

7:' + 𝜃?𝐹? + 𝑣!? − 𝑢!?.                                                             (9) 
 
The ‘pooled’ intercept 𝛼@ in equation (8) is dropped, and the TFE parameters 𝜃? are estimated for 
each of the 𝑙 districts. TE is again calculated according to equation (3), and TFP is given by: 
 
𝑇𝐹𝑃6(𝑦!? , 𝑥!?) = D∏ F𝑥7!?

8#"(/9#G6
7:' H × [𝑒𝑥𝑝(𝜙!?)] × [𝑒𝑥𝑝(𝑢!?)] 	× [𝑒𝑥𝑝(𝑣!?)],           (10) 

 

 
1,2 Results available upon request. 
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where the additional second right-hand-side component, [𝑒𝑥𝑝(𝜙!?)], measures fluctuations in TFP 
due to HH district-level heterogeneity (O’Donnell 2016). Finally, the selection of the preferred C-D 
SPF model relies on likelihood ratio tests and the Akaike information criterion (AIC), where lower 
AIC values indicate a better model fit (Lai & Huang 2010). 
 
3. Results and discussion 
 
Estimates for the C-D SPF models are presented in Table 2. The two models generate similar results 
for each of the conventional production inputs – groundnut area (𝑋1), labour (𝑋2) and seed (𝑋3). The 
coefficients for the conventional inputs are all positive, less than one, and statistically significant at 
the 1% level. Estimated coefficients for the pooled SPF and TFE are, respectively, 0.298 and 0.328 
for groundnut area; 0.169 and 0.170 for labour; and 0.555 and 0.520 for seed. The relative importance 
of the primary inputs to groundnut production have been well documented by agronomists (CNFA & 
USAID 2010). Groundnuts are considered a low-input crop that requires relatively little labour to 
achieve modest yields. Even under adverse growing conditions where other crops may fail, 
groundnuts tend to produce, so it is an important food security crop (Valentine et al. 2016). Notably, 
groundnut seed weighs most heavily on predicted output, i.e. the partial elasticity of production is 
greater than groundnut area and labour, with a value exceeding 0.5. Furthermore, the partial 
elasticities of production for the two most productive inputs (i.e. seed and groundnut area) add up to 
0.83. Thus, seeding rate (kg of seed per ha) stands out as a critical factor for predicted groundnut 
production. We also observe that the average seeding rate for the sample is about a third of the 
recommended 100 kg/ha. The differential in seeding rates is consistent with the 70% yield gap 
between the average farmer in the sample and results from agronomic field trials (CNFA & USAID 
2010). Even the highest yield in the sample is about half of that from agronomic trials. 
 
Table 2: Cobb-Douglas stochastic production frontier models: Pooled and true fixed effects 

SPF Pooled True fixed effects (TFE) 
Variable Coefficient SE Coefficient SE 
𝑋1  0.298*** 0.057 0.328*** 0.054 
𝑋2  0.169*** 0.050 0.170*** 0.045 
𝑋3  0.555*** 0.057 0.520*** 0.045 
Constant 4.112*** 0.203 Suppressed  
DIST_1   4.298*** 0.217 
DIST_2   4.145*** 0.195 
DIST_3   4.153*** 0.222 
DIST_4   4.233*** 0.209 
𝜎)*  0.033  0.033  
𝜎+*  0.291  0.276  
𝜆	(= 𝜎+ 𝜎)⁄ )  2.975*** 0.110 2.884*** 0.481 
N 232  232  
Log Likelihood -90.61  -86.74  
AIC 193.3  191.5  

Note: Standard errors (SEs) clustered at village level in all cases 
 
The sum of the partial elasticities of production, a measure of economies of scale, is 1.02 for both 
models, suggesting mildly increasing returns (Table 2). However, a Wald test fails to reject the null 
hypothesis of constant returns to scale (CRS) for both cases, which prevails when the sum of the 
coefficients is equal to 1. The coefficient of the intercept term is positive and significant (1%) in the 
pooled SPF model. In the TFE model, the constant is suppressed and each of the district coefficient 
estimates are significant (1%). The estimated AIC values for the alternative model specifications are 
193.3 (pooled) and 191.5 (TFE), so the TFE model is preferred over the pooled specification. Table 
2 presents the results for both models and the estimates are consistent. We find no significant 
differences in the mean TFPI or TE estimates, as well as for maximum and minimum values and 
standard deviations.  
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The results for TFPI and TE are summarised in Table 3. The mean TFPI ranges from 0.305 (pooled) 
to 0.336 (TFE), with a minimum-maximum range of 0.05 to 1.00 (Table 3). These figures indicate 
that the average farm is about a third as productive as the top farm in the sample. This gap reveals a 
significant opportunity to expand output through productivity gains. Although very few studies in the 
region have conducted similar TFP analysis, our results are consistent with recent farm-level 
estimates for smallholders in three nearby countries – Malawi, Tanzania and Uganda (Julien et al. 
2019). The findings show that productivity gains can be achieved by increasing TE. For the sample, 
mean TE ranges from 0.677 (pooled) to 0.682 (TFE). The minimum and maximum values range from 
0.354 to 0.926 (pooled) and 0.356 to 0.931 (TFE) between the models. Thus, we find evidence that, 
under current technology, managerial improvements can play an important role in increasing 
productivity. Again, these results are in line with values for the region as summarised in available 
meta-analyses of TE in SSA (Bravo-Ureta et al. 2007; Ogundari 2014; Bravo-Ureta et al. 2017).  
 
Table 3: Summary of total factor productivity index and technical efficiency estimates 

Model Mean St. dev. Min Max 
TFPI     
Pooled 0.305 0.172 0.048 1.000 
TFE 0.336 0.188 0.049 1.000 
TE     
Pooled  0.677 0.162 0.354 0.926 
TFE  0.682 0.160 0.356 0.931 

Note: TFPI and TE calculations based on C-D SPF estimates  
 
As discussed, the Wald test supports CRS, so changing the scale of production is expected to have no 
effect on productivity in this case. On the other hand, an adjustment in the input mix to recommended 
seeding rates is an important consideration for increasing productivity. Finally, the district fixed 
effects that account for unobservables have a clear effect on productivity. Hence, the TFE model is 
not only the preferred option in this study, but also has the advantage of controlling for unobserved 
heterogeneity at the district level. The net result is a better estimation of the frontier that generates 
slightly higher TFP and TE estimates. 
 
4. Summary and concluding remarks 
 
Our work uses microlevel data to examine household productivity for groundnut production, an 
important crop in Mozambique as well as in other sub-Saharan Africa countries. The productivity 
literature for Mozambique is thin, with no micro-studies found that focus on total factor productivity 
and very few that examine technical efficiency. Therefore, this paper contributes to the literature by 
providing productivity analyses for farmers in the Northern region of the country. Estimates from 
alternative Cobb-Douglas stochastic production frontier models are well behaved, with positive and 
statistically significant parameters for the conventional inputs (land, labour and seed). We find that 
seed use has the highest elasticity of production, and this is consistent with the sub-optimal seeding 
rates observed in the sample. The results from the preferred true fixed effects model reveal a mean 
total factor productivity index and technical efficiency score equal to 33.6% and 68.2%, respectively. 
This indicates ample room for productivity growth under current technologies, which can be achieved 
through improved management. Furthermore, our findings are generally consistent with earlier 
studies from the region (Bravo-Ureta et al. 2007; Ogundari 2014; Bravo-Ureta et al. 2017; Julien et 
al. 2019).  
 
The abundance of arable land in Mozambique, along with our empirical findings supporting constant 
returns to scale, suggests that further analysis of extensification designed to increase domestic output 
is warranted. Given that 95% of domestic output comes from smallholders, it is possible to achieve 
meaningful increases in production through smallholder extensification. Furthermore, successful 
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extensification efforts would require complementary measures to intensify production through the 
adoption of good management practices and technologies.  
 
Groundnut experts have identified several approaches to increase yields in SSA, such as early 
planting, following recommended seeding rates, additional weeding, adoption of regionally adapted 
high-yielding drought- and disease-resistant seed varieties, and locally available low-cost soil 
amendments and pest control. The potential of these various actions is reflected in yield gaps between 
sample mean and field trials that exceed 70% (CNFA & USAID 2010). A key factor in narrowing 
this yield gap is the development and implementation of targeted agronomic training for smallholders, 
including well-designed demonstration and outreach activities. Another essential ingredient to 
encourage the adoption of productivity-enhancing practices is to adequately fund institutions that 
support smallholder producers as they seek to upgrade their farming skills and technologies. 
Groundnuts are a promising crop with the potential to enhance the diversity and productivity of 
smallholder production portfolios in the face of increasing atmospheric carbon dioxide, while 
providing essential nutrients to food-insecure households. We find that the potential for agricultural 
productivity gains among smallholder groundnut farmers in Mozambique is substantial.  
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