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Abstract 

 

Integrated pest management (IPM) has been promoted globally as an alternative approach to the 

widespread broad-spectrum chemical insecticidal application for the control of pests and diseases in 

agricultural production to minimise the harmful effects of the chemicals on humans and the 

environment. This study examines the impact of an IPM strategy developed to control mango fruit 

flies on humans and the environment. Using a random sample of 371 mango farmers from Meru 

County in Kenya, health and environmental outcomes were measured using the environmental impact 

quotient (EIQ) field use and causal impacts, which were estimated using the endogenous switching 

regression (ESR) model. The results indicate that the adoption of the IPM strategy reduced pesticide 

use and pesticide toxicity. Policy efforts therefore should focus on promoting and disseminating fruit 

fly IPM to improve the livelihoods of rural mango farmers, but also reduce human health and 

environmental threats as a result of pesticide use.  

 

Key words: integrated pest management; environmental impact quotient; mango fruit fly 

 

1. Introduction  

 

Agriculture has been a significant source of food for the human population across many generations. 

However, contemporary challenges, such as global warming, invasive species, land degradation and 

chronic diseases, among others, have presented new problems in the sector. Hawkes and Ruel (2006) 

developed a conceptual framework that shows a bidirectional relationship between health and 
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agriculture. Good health and productive agriculture are two sides of a coin that are both imperative 

in the fight against poverty and malnutrition. Good agricultural practices promote health through the 

provision of safe food, medicine and fibre, while good health translates into productive labour in 

agriculture (Chang et al. 2015).  

 

Although food crops are the most significant crops in Kenya, mango production contributes 

immensely to the horticultural sector of the country (Sennhenn et al. 2014; Horticultural Crops 

Development Authority [HCDA] 2016). Besides their well-known nutritional benefits (Septembre-

Malaterre et al. 2016), mangoes provide income to farmers through local markets and also earn the 

country foreign exchange through exports (HCDA 2016; Ndlela et al. 2017). The crop provides 

employment opportunities to smallholder farmers, thereby presenting an excellent opportunity for 

rural development. Despite the seeming benefits of the mango enterprise, the productivity of the crop 

in Kenya is still below its potential due to various challenges, among them two main pests (fruit flies 

and mango seed weevil) and two primary diseases (powdery mildew and anthracnose) (Griesbach 

2003). Fruit fly infestation is the most disastrous constraint to mango production, contributing a loss 

of up to 40% of annual mango production because of its numerous generations per season, which 

cause rapid multiplying and spread, along with resistance to existing chemical pesticides over time 

(Ekesi et al. 2014). 

 

While pesticides are known to intensify agricultural production (Carvalho 2017), they are often 

over(mis)used (Bertrand 2019). The limited effectiveness of synthetic pesticides, due to the 

progressive loss of the pesticidal potency of the active ingredients and farmers’ low levels of 

knowledge, could prompt delayed treatment or incorrect dosages (Fan et al. 2015). Mis(over)use of 

chemical pesticides contributes to adverse environmental effects such as loss of biodiversity, 

pollution of soils and water resources, alteration of soil and groundwater pH, and permanent changes 

to the ecosystem (Gill & Garg 2014). Besides, pesticides affect the health of domestic animals, 

mammals, fish, bees, soil microorganisms and other beneficial organisms (Maumbe & Swinton 2003; 

Donga & Eklo 2018). Synthetic chemicals might cause short-term health effects such as pain in the 

chest, and long-term consequences such as cancer (Macharia 2015).  

 

Chemical-free protection strategies that are less harmful to the environment and humans offer safe 

and cost-friendly protection of crops against pests and diseases. One such approach is integrated pest 

management (IPM), which decreases the net quantity of pesticide used in pest control (Alam et al. 

2016). The IPM approach combines different pest control methods (e.g. biological, chemical, 

mechanical and cultural) to develop the most effective and cost-friendly package of strategies to 

manage insects and diseases below their economic injury level (Fernandez-Cornejo 1998; Fernandez-

Cornejo & Ferraioli 1999). In Africa, the International Centre of Insect Physiology and Ecology 

(ICIPE), under the Africa fruit fly programme (AFFP), in collaboration with its local and international 

partners, has developed and promoted an IPM package for the suppression of fruit flies (Ekesi & 

Billah 2007; Mohamed et al. 2008; Mohamed et al. 2010; Ekesi et al. 2014; Ekesi 2015). The package 

comprises: (1) spot application of food bait, (2) male annihilation technique, (3) Metarhizium 

anisopliae-based biopesticide application, (4) releases of parasitoids (Fopius arisanus (Sonan) and 

Diachasmimorpha longicaudata (Ashmead) (both Hymenoptera: Braconidae), and (5) the use of 

orchard sanitation. AFFP aims at stimulating mango productivity and enhancing the marketing of 

mangoes and to increase the income and food security of mango farmers and other value chain actors 

in the region.  

 

While socioeconomic-related literature exists on the effectiveness of IPM in reducing pest damage in 

horticultural enterprises in developing countries (see, for example, Kibira et al. 2015; Muriithi et al. 

2016; Githiomi et al. 2019; Midingoyi et al. 2019), rigorous empirical literature, particularly on the 

health and environmental impacts of IPM practices and especially on Sub-Saharan Africa, is limited. 

The few existing farm-level IPM impact studies (Isoto et al. 2014; Kibira et al. 2015; Muriithi et al. 
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2016; Githiomi et al. 2019) focused mainly on the direct economic benefits of IPM adoption. 

Understanding the environment and health benefits of IPM is essential because continuous chemical 

inputs pose a considerable risk to human health and the environment (Macharia 2015).  

 

Our study contributes to the existing literature by quantifying the health and environmental benefits 

of IPM adoption, utilising the environmental impact quotient (EIQ) model (Kovach et al. 1992). 

Unlike previous studies that relied on descriptive results based on EIQ field-use rating (e.g. Mujica 

& Kroschel, 2019), we empirically evaluated the health and environmental impact of IPM adoption 

using the endogenous switching regression model, a more rigorous approach for estimating treatment 

effects. Although Midingoyi et al. (2019) used similar methods, the literature on the health and 

environmental impacts of IPM technologies is limited. 

 

2. Methodology 

 

2.1 Study area and sampling technique 

 

This study was conducted in Meru County, Kenya. The county represents one of the significant 

mango-growing regions in the country and it is one of the counties in which ICIPE previously 

disseminated the IPM strategy for the suppression of fruit flies. The study utilised a sampling frame 

developed by an earlier survey done by ICIPE to evaluate the direct effects of the approach on mango 

production. An elaborate description of the study area, sample size, target population and sampling 

procedure is provided by Muriithi et al. (2016).  

 

Out of the 828 mango producers successfully interviewed previously, a sample of 371 households 

was randomly selected for this study. Similarly to the case in the earlier survey, we followed the 

probability proportional-to-size (PPS) sampling technique to select 206 IPM farmers from Central 

Imenti, North Imenti and South Imenti sub-counties, and 165 non-IPM farmers from Tigania West 

sub-county. The data were collected using face-to-face interviews to capture mango-related variables 

(production, pest management and sales, among others) referring to the mango season from July 2014 

to April 2015. Farm and household characteristics and contextual information were also captured. 

 

2.2 Environmental impact quotient (EIQ) 

 

This paper utilised the environmental impact quotient (EIQ) model to quantify the health and 

environmental effects of IPM technologies. The EIQ model was developed by Kovach et al. (1992) 

to quantify the effects of various crop pests and disease-control strategies on humans and the 

environment. The model aggregates the pesticide risks posed to farm workers, consumers of farm 

products and the environment into a single numerical value (Macharia et al. 2009). The model 

estimates pesticide risks on a three-point scale, following the hazard of the various pesticides, with 1 

representing the lowest, 3 intermediate and 5 the highest. The potential risks of pesticide toxicity can 

also be determined by other proxies, such as LD50 (dose at which 50% of the treatment group dies 

within a specified period) or LC50 (concentration at which 50% of the treatment group dies within a 

specified time), and the potential exposure such as the half-life, runoff or leaching potential (Swinton 

& Williams 1998). The EIQ formula is defined as stated below: 

 

𝐸𝐼𝑄 = {𝐶[(𝐷𝑇 ∗ 5) + (𝐷𝑇 ∗ 𝑃)] + [𝐶 ∗ ((𝑆 + 𝑃)/2) ∗ 𝑆𝑌) + (𝐿)] + [(𝐹 ∗ 𝑅) + 
    (𝐷 ∗ ((𝑆 + 𝑃)/2) ∗ 3) + (𝑍 ∗ 𝑃 ∗ 3) + (𝐵 ∗ 𝑃 ∗ 5)]}/3               (1) 

 

where:  
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C = chronic toxicity, DT = dermal toxicity, P = plant surface residue half-life, S = soil residue half-

life, SY = systematicity, L = leaching potential, F = fish toxicity, R = surface loss, D = bird toxicity, 

Z = bee toxicity, and B = beneficial arthropod activity.  

 

The values of the parameters in the equation are determined by toxicity information from several 

sources, including the extension toxicology network, published journals and individual chemical 

manufacturers. However, EIQ is not a convincing measure of pesticide health and environmental 

health impacts. There are pesticides of different formulations that have the same active ingredient and 

are applied in various dosages and frequencies by farmers. To account for this discrepancy, we 

adopted the EIQ field use component to compare the health and environmental impacts of IPM 

technologies and conventional methods. We computed the EIQ field use by finding the product of 

EIQ, the pesticide dose, the percentage active ingredient and the frequency of pesticide application, 

as shown in the formulae below (Donga & Eklo 2018). 

 

𝐸𝐼𝑄 field use rating = EIQ * % active * frequency of application *dose              (2) 

 

EIQ field use helps in comparing the health and environmental impacts of different pest control 

strategies. The weights used were based on the area sprayed with pesticides, the dose, and the 

frequency of application.  

 

2.3 Endogenous switching regression (ESR) model 

 

The endogenous switching regression (ESR) model was estimated to determine the counterfactual 

health and environmental effects between the control and treatment groups. This is a two-stage model 

according to which a probit model is used in the first stage to evaluate the adoption determinants of 

IPM technologies. We specified the probit model, as shown below: 

 

𝑍𝑖
∗ = 𝛽𝑋𝑖 + 𝑢𝑖 where 𝑍𝑖 =1, when 𝑍𝑖

∗ > 1 and 0 otherwise,               (3) 

 

where 𝑍𝑖
∗ is the unobserved variable of IPM adoption, 𝑍𝑖 is the observed adoption variable in terms 

of which 1 represents adoption and 0 otherwise, 𝑋𝑖 are noted variables that influence IPM adoption, 

and 𝑢𝑖 is the unobserved variable related to IPM adoption.  

 

We assume farmers are rational and that they will make decisions based on the expected benefits of 

the new technology. However, technology adoption is potentially endogenous (Adego et al. 2019). 

Thus, we adopt an ESR model that treats the control and treatment farmers in two separate regimes, 

expressed as: 

 

𝑌1𝑖 = 𝛼𝐽1𝑖 + 𝑒1𝑖 if Z𝑖 = 1                    (4) 

 

𝑌2𝑖 = 𝛼2𝐽2𝑖 + 𝑒2𝑖 if Z𝑖 = 0                     (5) 

 

where Yi refers to the computed EIQ field use of the control and treatment, Ji is a vector of covariates 

that influence the magnitude of EIQ field use, and ei is white noise.  

 

The error terms in Equations 3 to 5 are assumed to have a trivariate normal distribution with a zero 

mean and a non-zero determinant matrix, as follows: 

 

𝑐𝑜𝑣(𝑒1𝑖, 𝑒2𝑖 , 𝑢𝑖) = [

𝜎𝑒2
2 . 𝜎𝑒2𝜇

. 𝜎𝑒1
2 𝜎𝑒1𝜇

. . 𝜎𝜇
2

],                  (6) 
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where 𝝈𝝁
𝟐 refers to the variance of the random disturbance term in the probit model, while 𝝈𝒆𝟏

𝟐  and 

𝝈𝒆𝟐
𝟐  are variances of Equations 4 and 5 respectively. The covariance of the error terms in equations 

3,4 and 5 are represented by 𝝈𝒆𝟏𝝁 and 𝝈𝒆𝟐𝝁. According to Maddala (1983), since 𝒖𝒊 is correlated with 

𝒆𝟏𝒊 and 𝒆𝟐𝒊, the expected values of 𝒆𝟏𝒊 and 𝒆𝟐𝒊 conditional on the selected sample of 371 are not equal 

to zero. While analysing the model in STATA, we followed a full information maximum likelihood 

(FIML), as discussed by Lokshin and Sajaia (2004). The advantage of FIML is that the first and 

second stages of the ESR model are estimated concurrently to yield consistent standard errors 

(Hensher 1986). The model was further identified by the use of distance to the hospital as an 

instrument that was obtained using the falsification process (Di Falco & Veronesi 2013).  

 

2.4 Counterfactual analysis and treatment effects 

 

The ESR model has the capability to conduct a counterfactual analysis. In other words, the model 

helps us to compute hypothetical values of EIQ field use if the farmers in the treatment region had 

not adopted IPM technologies. Similarly, we can calculate EIQ field use for control farmers had they 

adopted IPM technologies. The difference between the observed EIQ field use and the respective 

hypothetical values for the treatment and control farmers gives the treatment effects. The average 

EIQ field use for IPM adopters is calculated as shown in Equation 7. If they had not adopted IPM 

technologies, the average EIQ field use would be computed using Equation 8. 

 

𝐸(𝑌1𝑖/𝑍𝑖 = 1) = 𝛼1𝐽1𝑖 + 𝜎𝑒1𝑢𝜆1𝑖                   (7) 

 

𝐸(𝑌2𝑖/𝑍𝑖 = 1) = 𝛼1𝐽1𝑖 + 𝜎𝑒2𝑢𝜆1𝑖                   (8) 

 

Similarly, the average EIQ field use for non-adopters is computed as shown in Equation 9. Had they 

adopted IPM technologies, the new EIQ field use for non-adopters would be arrived at as shown in 

Equation 10.  

 

𝐸(𝑌2𝑖/𝑍𝑖 = 0) = 𝛼2𝐽2𝑖 + 𝜎𝑒2𝑢𝜆2𝑖                   (9) 

 

𝐸(𝑌1𝑖/𝑍𝑖 = 0) = 𝛼2𝐽1𝑖 + 𝜎𝑒1𝑢𝜆2𝑖                 (10) 

 

Treatment effects are obtained by obtaining the difference between the observed and counterfactual 

expected values of EIQ field use (Adego et al. 2019). The average treatment of the treated (ATT) is 

the difference between Equations 7 and 8, as illustrated below: 

 

𝐴𝑇𝑇 = 𝐸(𝑌1𝑖/𝑍𝑖 = 1) − 𝐸(𝑌2𝑖/𝑍𝑖 = 1) = 𝐽1𝑖(𝛼1 − 𝛼2) + 𝜆1𝑖(𝜎𝑒1𝑢 − 𝜎𝑒2𝑢)           (11) 

 

In the same way, the average treatment on the untreated (ATU) is the difference between Equations 

9 and 10. This is expressed below: 

 

𝐴𝑇𝑈 = 𝐸(𝑌1𝑖/𝑍𝑖 = 0) − 𝐸(𝑌2𝑖/𝑍𝑖 = 0) = 𝐽2𝑖(𝛼1 − 𝛼2) + 𝜆2𝑖(𝜎𝑒1𝑢 − 𝜎𝑒2𝑢)           (12) 

 

3. Results and discussion 

 

3.1 Descriptive estimation of health and environmental effects of IPM technologies and 

pesticides 

 

Table 1 presents the field use environmental impact quotient (EIQ) for pesticide use in mango 

production for the control and treatment regions in Meru County. The results from the table show that 

Bayleton and Bulldock are the most used pesticides in mango production in the study area, 
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representing 34.50% and 33.96% of the total pesticide used respectively. The two pesticides recorded 

15.43% and 24.47% of the total pesticide usage by the IPM farmers and 22.78% and 22.42% among 

non-IPM farmers respectively. Mean EIQ values for farmworkers, consumers and environmental 

components among the non-IPM users were 24, 10 and 75 respectively, while among IPM farmers 

the mean components were 25, 10 and 73 respectively. 

 

To obtain the volume of individual pesticides applied per acre, we first computed the treated area by 

multiplying the percentage of farmers using pesticides in mango production by the total area under 

mango trees. The obtained treated area was then multiplied by the rate of pesticide applied per acre 

to find the estimated amount of chemicals used. From the literature, we listed all pesticides applied 

to mangoes and their recommended application rates. We also interviewed pivotal agricultural experts 

and pesticide vendors to obtain information on recommended pesticide dosages, which were 

counterchecked with the report on the Pest Control Products Board (PCPB) Kenya website and the 

product labels. With the aid of the procedure proposed by Kovach et al. (1992), EIQ values for each 

active ingredient of a pesticide used were calculated based on the active pesticide ingredient and 

physical properties, while others were obtained from internet sources and published journals 

(Macharia et al. 2009).  

 

Based on the EIQ classification rule of Mazlan and Mumford (2005), values for all the pesticides 

used in mango production showed that 30%, 25% and 45% of those pesticides were rated as low (EIQ 

= 0 to 20), moderate (EIQ = 21 to 40) and high (EIQ ≥ 41) respectively. Pesticide active ingredients 

that had EIQ field use below 40 were deltamethrin (II), acephate (III), thiamethoxam (U), lambda 

cyhalothrin (II), carbendazim (U), cypermethrin (II), imidacloprid (II), propineb (1II), thiophanate-

methyl (U) and sulphur (U). Methomyl (IB), dimethoate (II), triadimefon (III), acephate (III), copper 

oxychloride (III) and beta-cyfluthrin (II) had an EIQ field use of greater than 40. Generally, the results 

show that the environmental component of the EIQ was high among both the IPM and non-IPM 

farmers, but there was a significant difference in the EIQ field use between the two categories of 

farmers. Continued use of pesticides in mango production among the IPM farmers is puzzling, since 

the strategy is expected to reduce pesticide use. Muriithi et al. (2016) made a similar observation in 

this region, where they found no significant difference in pesticide expenditure between the IPM and 

non-IPM farmers.  

 

Amongst the total pesticides used for mango production in Meru County, none were classified in 

category 1a (extremely hazardous), 10% were in category 1b (highly hazardous), 40% were in 

category II (moderately hazardous), 25% in category III (slightly hazardous), and 25% were in 

category U (unlikely to present acute hazard when in regular use). The remaining two categories – 

FM (fumigant, not classified) and O (obsolete as a pesticide, not ranked) – were not used in mango 

production. The total EIQ field use in Meru County was 4 049.67, with 84% found among the non-

IPM farmers. The overall field-use EIQ rating per individual pesticide ranged from 0.58 to 946.16, 

being lowest for deltamethrin (0.58) and highest for dimethoate (946.16). 

 

There is a need to encourage farmers to use more moderate hazardous pesticides, since only 25% of 

pesticides in this category are used in mango production. The use of less hazardous pesticides and 

IPM technologies by mango farmers will promote environmental and economically sustainable 

agriculture that is consistent with the sustainable development goals. Although this study was done 

for mango production, increasing awareness of the use of less hazardous chemicals in combination 

with IPM will help in safeguarding the environment and human health.  
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Table 1: EIQ component values related to health and environmental effects of pesticides used by mango farmers in Meru County 

Active ingredient 
Trade 

name 
EIQ F EIQ C EIQ E EIQ T 

Rate 

(kg/acre) 

EIQ field 

use overall 

EIQ field use 

 IPM non-

participants 

EIQ field use 

IPM 

participants 

T value P value 

% of 

farmers 

using 

Vol.kg 

Thiamethoxam (U) Actara 10.35 12.03 77.52 33.3 0.12 5.75 3.55 2.19 0.7891 0.2341 0.81 1.14 

Methomyl (IB) Agrinate 6 11 75 31 0.28 277.38 221.12 56.27 0.2389 0.8805 6.20 452.31 

Propineb (1II) Antracol 6 5.78 14 18.34 0.27 30.93 0.10 30.82 1.2615 0.5807 6.20 534.42 

Triadimefon (III) Bayleton 12.15 15.15 53.57 33.3 0.25 277.31 105.04 172.27 -2.9994*** 0.0033 34.50 134 040.8 

Beta-cyfluthrin (II) Bulldock 9 4 69 27 0.21 634.28 550.42 83.86 2.6674*** 0.0087 33.96 69 418.38 

Copper oxychloride (III) Copper 108 19 76 67.7 0.20 557.61 512.49 45.12 3.0990*** 0.0035 12.12 9 444.32 

Cypermethrin (II) Cyclone 9 4 69 27 0.14 22.75 12.14 10.61 -1.5302 0.1482 4.58 173.3091 

Dimethoate (II) Danadim 72 9 141 74 0.22 76.91 46.79 30.11 -0.5301 0.6104 2.67 35.25 

Deltamethrin (II) Decis 6 3 68 26 0.26 0.58 0.21 0.37 0.2350 0.4325 2.43 101.10 

Dimethoate (II) Twigathoate 72 9 141 74 0.21 946.16 794.15 152.01 1.3425 0.7856 8.63 2 855.765 

Mancozeb (U) Dithane 12 3 29 44 0.40 532.53 515.95 16.56 0.0955 0.92566 2.43 90.54 

Lambda cyhalothrin (II) Karate 21 3 106 44.17 0.09 7.96 7.12 0.84 0.1144 0.9100 6.20 84.38 

Methomyl (IB) Weiling 6 11 75 31 0.31 56.45 38.27 18.18 -1.9925* 0.0866 2.42 69.92 

Propineb (III) Milraz 6 6 14 9 0.17 1.54 0.00 1.54 0.8745* 0.0534 1.35 5.07 

Acephate (III) Orthene 15 12.5 47.15 24.88 0.19 16.81 12.59 4.22 0.7131 0.4875 4.58 230.25 

Carbendazim (U) Rodazim 25 40.5 86 50.5 0.26 490.33 485.54 4.79 -0.7419 0.4752 3.23 28.57 

Alpha-cypermethrin (II) Tata alpha 21 3 106 44 0.30 39.62 39.62 0.00 0.1451 0.8862 5.39 34.38 

Sulphur (U) Thiovit 10 6 120 45.5 0.32 24.09 14.12 9.97 0.7117 0.4835 7.00 1 427.01 

Imidacloprid (II) Thunder 6.9 10.35 92.88 36.71 0.21 36.36 35.51 0.85 -1.1227 0.2722 7.27 435.39 

Thiophanate-methyl (U) Topsin 16.2 15.3 39.95 23.83 0.10 14.32 11.30 3.02 -0.58546 0.5796 2.16 2.87 

 Total      4 049.67 3410.27 639.40 -7.7660*** 0.000 100 219 465.20 

NB: Statistical significance at 0.01 (***), 0.05 (**) and 0.1 (*) 

EIQ F refers to the EIQ component for the farmer  

EIQ C refers to the EIQ component for the consumer  

EIQ E refers to the EIQ component for the environment 

EIQ T refers to the EIQ total  
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3.2 Determinants of IPM adoption  

 

A probit model was estimated in the first stage of the ESR model to evaluate determinants of IPM 

adoption. Post-estimation tests were also determined to test the validity of the model. First, the 

variance inflation factor (VIF) was applied among the independent variables. The results show that 

there was no strong correlation between the variables, since the values of VIF were far below 10. The 

Hosmer-Lemeshow test was also conducted to test the goodness of fit of the model. With a p-value 

of 0.29, we can say that Hosmer and Lemeshow’s goodness-of-fit test justified our choice of model.  

 

Exclusion restriction is required for the identification of the ESR model. This is because at least one 

variable that affects farmers’ adoption of IPM but does not directly affect the EIQ field use is needed. 

Based on the existing literature and our study context, we use households’ access to a health centre 

proxied as the distance to the nearest health centre as our identification strategy. Households’ access 

to a health facility has been used for identification purposes in previous, related studies (Baiocchi et 

al. 2010). We hypothesised that households that are near a health centre are likely to be more informed 

about the adverse effects of chemicals and consequently will adopt alternative methods of pest 

control, such as IPM. However, distance to a health centre may not relate directly to the EIQ field 

use. The suitability of this variable as a valid instrument is established by performing a falsification 

test, following Di Falco and Veronesi (2013). The variable exhibited a significant effect on IPM 

adoption decisions, but did not affect EIQ field use among the non-IPM households. 

 

The parameter estimates of the probit model are presented in Table 2. The likelihood to adopt IPM 

technologies was influenced by the size of agricultural land, the number of mature mango trees, access 

to irrigation water, IPM training, distance to the nearest health facility, group membership, and age 

of the household head. The probability of IPM adoption increased with the number of mature mango 

trees. This is reasonable, because more productive trees imply high production, and thus higher 

revenue from mango production may provide the necessary capital for investing in new technologies. 

This finding is consistent with Korir et al. (2015), who found that farmers with more mango trees are 

likely to adopt more IPM components.   

 

Table 2: Probit model for determinants of IPM adoption  
Variables Coefficient SE ME 

Wealth variables    

Agricultural land owned 0.3031** 0.1329 0.1183** 

Number of mango-producing trees 0.0034*** 0.0010 0.0013*** 

Human and productive capital variables    

Years is school 0.0057 0.0184 0.0022 

Years in mango farming 0.0121 0.0094 0.0047 

Household head age -0.0126* 0.0071 -0.0049* 

Household size  -0.0152 0.0370 -0.0059 

Gender of the household head 0.2457 0.2027 0.0959 

Labour management 0.1357 0.1046 0.0529 

Institutional and finance variables    

Access to extension officers 0.0696 0.1783 0.0272 

Attended IPM training 0.8281*** 0.1726 0.3232*** 

Access to irrigation water 0.2826* 0.1536 0.1103* 

Access to credit facilities -0.0447 0.1756 -0.0175 

Member of an agricultural group -0.5360*** 0.1694 -0.2092*** 

Distance to the nearest health facility 0.1718*** 0.0429 0.3232*** 

Farm management variables    

Protective clothes usage 0.1919 0.1557 0.0749 

Number of observations 371 

 NB: Statistical significance at 0.01 (***), 0.05 (**), 0.1 (*) 
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The positive correlation between farm size and IPM adoption is consistent with the findings of Uaiene 

et al. (2009). A possible reason is that the collateral value of land could be used to access credit, 

which enhances the adoption of IPM. Farm size affects adoption costs, risk perceptions, human 

capital, credit constraints, and labour requirements. Households with small farms face enormously 

high fixed costs involved in the adoption of new technologies. 

 

Access to water for irrigation is significantly correlated with the decision to adopt IPM technologies. 

Qualitative information from our study area revealed that access to water was a significant challenge, 

with only a few farmers having access to irrigation. Although Meru County receives adequate rainfall 

throughout the year, recent threats posed by climate change have induced farmers to supplement farm 

production with irrigation. Thus, farmers who access irrigation water can diversify production and 

produce different farm products throughout the year, which increases their yields and revenue 

(Bruinsma 2009), enabling farmers to adopt IPM technologies. 

 

In contrast to our expectation, social capital in terms of membership of a farming group negatively 

affected the probability of adopting IPM technologies. This is unexpected, as participation in social 

networks is considered a channel for accessing new information and thus increasing the likelihood of 

being exposed to new farming ideas (Uaiene et al. 2009). It is possible that farmers in a group are 

limited by group dynamics, while individual farmers have the freedom to make their decisions 

independently. In a large group of farmers, for instance, learning externalities can lead to opposite 

effects because of free-riding behaviours (Bandiera & Rasul 2006). 

 

The age of household heads is negatively related to the adoption of IPM. Adesina and Zinnah (1993) 

note that the rate of risk aversion and reluctance to invest in long-term technologies increases with 

age. Farmers who had attended IPM training were 32.32% more likely to adopt IPM technologies 

than those who had not. Trained farmers have prior knowledge of the potential benefits associated 

with technology, and thus they are likely to adopt the technology (Miheretu & Yimer 2017). 

Interestingly, farmers who reside further from health centres were more likely to adopt IPM 

technologies. A possible explanation could be that farmers far from health centres incur high 

transportation costs to these centres, thus increasing their health costs (Maumbe & Swinton 2003), 

and therefore are more likely to adopt technologies that are more health friendly.  

 

3.3 Health and environmental effects of adopting IPM technologies 

 

Table 3 reports the causal impacts of adopting IPM technologies. The descriptive statistics in the 

previous section comparing the mean of EIQ field use for the intervention and farmers’ practices 

revealed that adoption of the fruit fly IPM has aggregate positive benefits of a lower EIQ field use 

value (639.40). However, the approach is not enough to justify the positive effects of IPM 

technologies. The adoption of IPM technologies potentially is endogenous. The difference in EIQ 

field use may be influenced by other, unobservable characteristics of the farm households, such as 

their education level, farming experience, skills or income level. For instance, the most successful 

farm households could also be the most able ones, hence they would have done better than others 

even without adopting IPM technologies. We address this issue by estimating an endogenous 

switching regression model, which enables us to construct a valid counterfactual.  
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Table 3: Treatment effects of IPM technologies  
 Mean Std dev. T-test P-value 

IPM farmers with IPM (observed) 7.1231 1.7415 -9.4207*** 0.0000 

IPM farmers had they not adopted IPM (counterfactual) 7.8053 1.4993 -9.4207*** 0.0000 

Net change (ATT) -8.74%***   

Non-IPM farmers without IPM (Observed) 6.5240 1.8916 13.2567*** 0.0000 

Non-IPM farmers had they adopted IPM (counterfactual) 5.2903 1.1881 13.2567*** 0.0000 

Net change (ATU) 23.32%*** 

*** mean values are significant at the 1% level 

 

The results indicate that fruit fly IPM plays an essential role in reducing the harmful effects of 

pesticide use among IPM farmers. The adoption of IPM helps reduces the EIQ field. Specifically, 

farmers who used fruit fly IPM reduced the EIQ field use by 8.74%. The finding corroborates other 

studies that utilise different methodologies, and finds definite evidence of the impact of IPM on health 

and the environment (e.g. Fernandez-Cornejo 1998; Fernandez-Cornejo & Ferraioli 1999; De Bon et 

al. 2014). The ATU results in the lower part of Table 2 would show heterogeneous health and 

environmental effects of fruit fly IPM for non-IPM farmers if they adopted. The results suggest that 

non-IPM farmers would have reduced the value of EIQ field use by 23.32% if they had adopted the 

strategy.  

 

4. Conclusion and policy implications 

 

This study utilised household-level survey data collected from 371 mango growers in Meru County, 

Kenya to evaluate the health and environmental benefits of using IPM technologies for controlling 

fruit flies in mango production. While substantial literature exists on the effectiveness of IPM in 

reducing insect pests of horticultural output in developing countries, the empirical literature, 

particularly on the health and environmental impacts of IPM practices, especially in Sub-Saharan 

Africa, is limited. We contribute to the limited studies by utilising the environmental impact quotient 

(EIQ) model to quantify the health and environment effects of an IPM strategy developed and 

disseminated by ICIPE and partners to suppress fruit flies in Sub-Saharan Africa. Furthermore, in 

contrast to the previous studies, which relied on detailed results based on EIQ values or EIQ field-

use ratings, we empirically evaluated the treatment effects using the endogenous switching regression 

(ESR) model.  

 

We find that the adoption of IPM technologies reduces the negative impacts of pesticides, as 

demonstrated by a lower EIQ field-use rating among the IPM farmers and the significant average 

treatment effect. The first stage of the ESR model revealed that IPM adoption also depends on the 

size of agricultural land and the number of mango-producing trees owned, the age of the household 

head, IPM training, access to irrigation water, membership of a farming group, and distance to the 

nearest health facility. The findings recommend policy efforts that focus on promoting and 

disseminating fruit fly IPM to improve yields and income from horticultural production, and to reduce 

human health and environmental threats from pesticide use among the rural communities. Providing 

IPM training and access to irrigation water should be considered to enhance the adoption of fruit fly 

IPM. While this study provides useful insights regarding the health and environmental benefits of 

using IPM, our findings have limited generalisation, since the study is based on cross-sectional data. 

Besides, the effectiveness of IPM technologies is specific to each site. The benefits of these 

technologies vary geographically and depend on the level/intensity of adoption on the farm. We 

recommend that future studies should evaluate the long-term adoption and impact of the fruit fly IPM 

strategy on health and the environment, utilising panel datasets and focusing on different contexts in 

which the approach is being promoted. Further, we believe that collaboration by various disciplines, 

such as biologists, agronomists, environmentalists, soil scientists and economists, will be a great 

addition to future literature assessing the health and environmental benefits of IPM. 
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