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Abstract 

 

Uganda’s climate is changing in terms of rising temperatures and altered precipitation patterns, 

leading to extreme meteorological conditions such as prolonged drought, floods and landslides. Yet 

the majority (68%) of Ugandans rely largely on rain-fed agriculture, which is affected by climate 

variability. This study therefore investigates the effect of climate variability on agricultural 
productivity in Uganda by combining long-term climate data, sourced from the United States 

National Oceanic and Atmospheric Administration (NOAA), and six waves of the Uganda National 

Panel Survey (UNPS) spanning the period 2009 to 2019. Trends and the regression analysis 

estimated with panel data confirm the existence of climate variability, as well as the vulnerability of 

farming households across Uganda. The empirical results indicate a significant U-shaped impact of 

precipitation variability on agricultural productivity. This tends to suggest that, as variability in 

precipitation intensifies, farming households will adapt to the changing precipitation and thereby 

improve their productivity. The regional and crop-specific analysis show that, relative to other 

regions of the country, Eastern Uganda is likely to be the region affected the most, while beans and 

banana are likely to be affected more by climate variability compared to other crops such as maize 

and cassava. The study thus recommends measures aimed at encouraging farmers to adapt and 

increase agricultural productivity. There is a need to strengthen the provision of extension services 

and inform farmers about climate variability.1 
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1 The data is available from the authors upon request. 
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1. Introduction  

 

The nexus between agriculture and variations in climate continues to give rise to debate among 

different stakeholders, including scholars, across the globe. It is projected that climate variability is 

likely to affect agricultural productivity in developing nations, where the majority of farming 
households are involved in rain-fed agricultural activities (Kahsay & Hansen 2016; Huong et al. 2018; 

Masson-Delmotte et al. 2018; Kontgis et al. 2019). The impact may be felt less in developed countries 

due to their ability to quickly forecast and adapt to changing climatic conditions, their technology and 

the appropriate safety nets for their citizens to rely on livelihoods other than agriculture (Mubiru et 

al. 2018).  

 

For developing countries such as Uganda, where 68% of farming households are engaged in 

traditional subsistence farming (Uganda Bureau of Statistics [UBoS] 2018), variations in climate 

might have a substantial impact on agricultural productivity (Mwaura & Okoboi 2014). This is 

because climate variability is expected to increase the frequency of extreme precipitation conditions, 

prolonged dry seasons and floods (Banerjee et al. 2019), which greatly influence agricultural 

outcomes, especially in subsistence agriculture (Lee et al. 2012; Sheng & Xu 2019). Therefore, 

understanding the effect of climate variability on agricultural productivity is important to back up the 

design of policies that stimulate the adoption of long-term adaptation mechanisms (Reed et al. 2017; 

Huong et al. 2018). This also facilitates the assessment of the degree of vulnerability of the country’s 

economy, as well as of the farming households and their dependants to variability in climate and its 

associated effects. It also fits well in the planning aspirations of the farmers, government and all those 

stakeholders engaged in agricultural activities. 

 

Despite its declining GDP share, the agriculture sector is still Uganda’s economic backbone and the 

chief employer of most Ugandans (World Bank 2019). The sector employs around 70% of Uganda’s 

total labour force, contributes around 25% to GDP, and accounts for about 45% of the country’s total 

exports (Uganda Bureau of Statistics [UBoS] 2017). Agriculture as a sector therefore has the potential 

to steer Uganda’s development agenda, as outlined in Uganda’s vision 2040 and the corresponding 

National Development Plans (I, II and III;2 NPA 2015). It provides opportunities for economic 

inclusion, especially for women and the youth, who are the main participants in the sector (UBoS 

2018). However, the sector remains vulnerable to climate shocks, such as prolonged drought and 

unreliable rainfall patterns (Mwaura & Okoboi 2014; Abidoye et al. 2017a).  

 

In addition, farming households in the subsistence sector lack timely climate and weather forecast 

information, and the skills and resources required to mitigate or adapt to climate variability (Guloba 

2014). Thus, it is vital to understand the effects of climate variability on the productivity of Uganda’s 

agricultural sector to generate evidence to design appropriate measures to minimise and mitigate its 

risks. Failure to do so may expose farming households to food insecurity and poverty, given the 

limited non-farm opportunities, especially in rural Uganda, coupled with the growing population size 

(Mwaura & Okoboi 2014; Ochieng et al. 2016). Through the Ministry of Agriculture, Animal 

Industry and Fisheries (MAAIF), Uganda’s government designed and started the implementation of 

the National Adaptation Plan for the Agricultural Sector (NAP-Ag) in 2018 (Adade et al. 2019; 

Mubiru et al. 2018). This was aimed largely at minimising the effects of variability in climate on 

farmers across the country (MAAIF 2018). It was done in response to increasing instances of intense 

and prolonged dry spells in some areas of the country, along with droughts, floods, and an increase 

in temperature and higher incidence of pests and diseases as a result of the varying climatic conditions 

 
2 These are five-year national development plans, designed in line with the country’s vision 2040 (NPA 2015). The 

country is currently implementing National Development Plan (NDP) III (2020 to 2025). 
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in the country (Mubiru et al. 2018; UBoS 2019). In addition, the performance of Uganda’s 

agricultural sector has been varying over time (UBoS 2018; World Bank 2019). Climate variability 

in Uganda is largely attributed to the continuous destruction of the environment and nature by human 

activities such as deforestation,3 wetland reclamation, and the use of poor farming techniques by some 

farmers (Abid et al. 2016; UBoS 2019). Other causes include increasing industrialisation in the 
country, poor disposal of plastics and polythene bags, increasing electronic waste, and oil exploration 

activities in the Albertine region (Ministry of Water and Environment [MoWE] 2015; Masson-

Delmotte et al. 2018).  

 

Several scholars have carried out studies on the effect of climate variability on agriculture across the 

world, including in Africa. Among these are: Mendelsohn and Nordhaus (2010), Mendelsohn (2011), 

Ludena and Mejia (2012), Kontgis et al. (2019). The majority of these studies have been conducted 

in developed countries, although they are currently on an increase in developing nations, including 

African states (Kabubo-Mariara et al. 2016). This shows the value attached to the analysis of the 

impact of climate variability on agriculture by various stakeholders, governments and scholars all 

over the world. In addition, most of them (see, for example, Mendelsohn & Nordhaus 2010; Mottet 

et al. 2017) have concentrated largely on analysing the effect of climate variability on agricultural 

yields and incomes, as opposed to analysing the agricultural productivity implications of climate 

variability following the declining land per capita and increasing population size. Even more so, the 

effects of climate variability are likely to vary across countries and from one crop to another, hence 

the need for country-specific studies. Thus far, the lack of an in-depth and countrywide study that 

combines household-level and long-term climate data to analyse the impact of climate variability on 

agricultural productivity has curtailed the decision-making and planning process among the farming 

households, government and other participants in the sector. This study fills these gaps by estimating 

agricultural productivity by way of a Ricardian model in a panel setting at the national and regional 

level and for the four common crops grown across Uganda – maize, beans, banana and cassava. 

 

2. Literature review 

 

Nature-dependent sectors such as agriculture are highly sensitive and susceptible to climate 

variability and its effects (Food and Agriculture Organization of the United Nations [FAO] 2008; 

Wang et al. 2009; Massetti & Mendelsohn 2017). This is largely because agriculture involves natural 

processes that require specific amounts of nutrients, and specific temperatures and precipitation for 

the proper growth of both crops and animals (Van Vuren et al. 2009; Gornall et al. 2010; Mamane 

Bello & Malam Maman 2015). According to Nastis et al. (2012), Limantol et al. (2016) and Ali and 

Erenstein (2017), climatic attributes that are anticipated to have a direct effect on agricultural 

productivity include variability in temperature and changes in the occurrence and intensity of 

precipitation, such as rainfall. Others are variability in incidences of dangerous weather conditions 

(for example prolonged dry seasons, water overflows and landslides), and changes in carbon dioxide 

(CO2) levels available for the process of plant photosynthesis.  

 

Crop production varies strongly with variability in temperature, wind and rainfall amounts received 

in a given area (Baya et al. 2019; Sheng & Xu 2019). This relationship depends on the crop type and 

the location where the particular crop is grown (Ayinde et al. 2017; Rötter et al. 2018). Altered rainfall 

patterns not only affect crop growth, but also decrease the amount of water available for irrigation by 

some farming households (Mwangi & Kariuki 2015; Arshad et al. 2017). Variations in temperature 

and moisture levels indirectly affect crops’ capacity to absorb manure and other soil reserves that are 

 
3 Uganda’s forest cover has decreased drastically since independence, from 42% in 1962 to about 9% in 2016 (UBoS 

2018), largely due to the need for more land for agriculture, settlement and industrialisation. 
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important in influencing crop output (Cotter et al. 2010; Alam et al. 2014). Variability in climate is 

likely to influence the kinds, incidences and occurrences of crop pests and diseases; affect 

accessibility, timing and availability of water for irrigation; and increase cases of soil erosion 

(Ochieng et al. 2016; Arslan et al. 2017; MAAIF 2018).  

 
Climate variability is projected to increase yields of some crops (Debaeke et al. 2017; Seo & 

Mendelsohn 2008) – for instance, by increasing the regularity and amount of rainfall in some areas, 

thereby lengthening crop seasons. Rising concentrations of carbon dioxide as a result of climate 

variability can raise the productivity of agroecosystems – but also vice versa (Wang et al. 2009). 

However, the overall global impact of climate variability on productivity is projected to be negative, 

and the negative impact will be felt more in developing countries (Silvestri et al. 2012; Urgessa 2015; 

Kumar et al. 2016; Ayinde et al. 2017; Huong et al. 2018; Kontgis et al. 2019; Sheng & Xu 2019). 

This paper therefore establishes the actual effect of variability in climate on agricultural productivity 

and the yields of selected crops. 

 

In an empirical study, Kabubo-Mariara and Karanja (2007) studied the economic effects of climate 

change on crop agriculture in Kenya, using a seasonal Ricardian model and a crop simulation model 

in 38 out of 46 former districts and now counties of the country. The study used several data types, 

including long-term precipitation and seasonal temperature averages; long-term monthly average 

hydrological data; soil types; and a cross-sectional household survey. Their findings indicate that 

variability in climate affects crop revenues, with a rise in temperatures from June to August leading 

to increased crop revenues, while a rise in temperatures from March to May contributes to a reduction 

in crop revenues. Their study further uncovered a non-linear impact of climate change (temperature 

and precipitation) on crop revenues. Their findings corroborate with those of some recent studies, 

such as Abidoye et al. (2017a) and Kurukulasuriya and Mendelsohn (2017). 

 

However, studies that use the traditional Ricardian approach and rely only on cross-sectional data 

have been criticised on the grounds that their estimated coefficients are unstable over time (Massetti 

& Mendelsohn 2011). This led to the modification of the traditional Ricardian approach to one that 

is estimated using panel data (Massetti & Mendelsohn 2011; Galindo et al. 2015; Kabubo-Mariara et 

al. 2016). For example, Galindo et al. (2015) estimated a Ricardian model with panel data in Mexico 

to establish the effect of climate variability on agricultural activities. They found that farms that 

depend on irrigation are vulnerable to variability in temperature, while rainfed farms are vulnerable 

to precipitation variability and extreme climatic events such as floods. The study by Galindo et al. 

(2015), however, based its analysis only on farm revenues and ignored productivity concerns, which 

are of greater interest given the rising population:land ratio. On the other hand, Kabubo-Mariara et 

al. (2016) concentrated on food and nutrition security. This study therefore addresses these gaps by 

focusing on the productivity effects of climate variability in Uganda using panel data and estimating 

the total factor productivity derived from the estimated stochastic production function.  

 

The second category consist of those studies that have applied crop-simulation models. Example are 

a world study by Rötter et al. (2018) and another by Van Oort and Zwart (2018). Rötter et al. (2018) 

analysed the impact of climate variability on five crops – maize, rice, wheat, potatoes and vegetables. 

Their study found that variation in climate led to a reduction in the yields of all five crops, and yet 

these are key food crops consumed globally. The study further predicted that the trend would worsen 

across the world by the year 2050 if nothing was done currently to tame the varying climate and its 

effects. However, the key limitation of Rötter et al.’s (2018) study, and other studies that use crop- 

simulation models such as that by Van Oort and Zwart (2018), is that they base their analysis only on 

simulated data obtained using assimilation methods grounded in cross-section models and remote 

sensing, instead of real data estimated using economic models. For more robust and concrete evidence 
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to guide accurate policy formulation, cross-sectional simulation models need to be combined with 

models that are based on economic theories and principles.  

 

The third category of the existing empirical studies involves those that have estimated stochastic 

production functions in the form of the Cobb-Douglas production function. These include, among 
others, Nastis et al. (2012), Kumar et al. (2016), Ademe et al. (2017) and Geng et al. (2019). For 

instance, Nastis et al. (2012) estimated a production function using secondary time-series data and 

ordinary least squares (OLS) with Newey-West standard errors for 28 years (1980 to 2007) in Greece. 

The findings of their study indicate that variability in both temperature and precipitation negatively 

affects agricultural yields. However, their study omitted the socio-economic household and farm- 

specific characteristics in its analysis. The omission of such variables might cause a problem of 

endogeneity, which will affect the accuracy and validity of the model estimates (Greene 2012). On 

the other hand, Kumar et al. (2016) assessed the effect of climate variations on the productivity of 

land, considering the main food and non-food crops in India using panel data collected over 30 years 

from 1980 to 2009. They did this for 15 crops in 13 key agricultural states of India. The results show 

that the productivity of land declines with an increase in yearly mean maximum temperatures. Using 

simulations, they projected a decrease in land productivity by 48.6% by the year 2100, which will 

greatly affect farmers’ crop productivity and their income levels.  

 

Similarly, Geng et al. (2019) applied a structural Cobb-Douglas production function and secondary 

time-series data from 1981 to 2016 to investigate the effect of variations in climate on wheat yields 

in northern China during the winter season. The study found that a rise in temperature has a negative 

effect on per unit wheat harvested. However, these authors concentrated on only one element of 

climate variability (temperature) and only one crop, ignoring other dimensions of climate variability 

such as variations in rainfall and other crops that equally can be affected by the varying climate. 

Secondly, the study focused only on one region of China, thus its findings cannot be generalised 

across the country. In addition, as noted by Aydinalp and Cresser (2008) and Ayinde et al. (2017), 

the agricultural productivity effects of climate variability might vary across the world, and these 

authors thus called for country-specific studies investigating the effects of climate variability on 

agriculture, since the impact might depend largely on existing local conditions. 

 

In Uganda, Mwaura and Okoboi (2014) analysed a time-varying ARCH approach to investigate the 

effect of climate variability on crop production. This study established that variations in temperature 

and rainfall from their long-run averages (climate variability) significantly affect crop yields, with an 

exponential rise in rainfall having the largest negative effect on crop yields in Uganda. The study, 

however, did not consider the socio-economic, household and institutional factors and yet this is the 

only national wide study on the subject matter in Uganda. Other existing studies on Uganda, such as 

those by Egeru (2012), Nabikolo et al. (2012) and Shikuku et al. (2017), did not cover the whole 

country and largely used descriptive statistics and trends in their analysis. In addition, these studies 

ignored productivity concerns and instead concentrated on crop yields. These gaps are what the 

current study addresses by using a nationally representative dataset to investigate the implications of 

climate variability on agricultural productivity in Uganda. 

 

From the review of the related literature, there are two arguments regarding the likely effect of climate 

variability on agricultural productivity. The first argument is that variability in climate might result 

in an increase in the yields of some crops (Seo & Mendelsohn 2008; Debaeke et al. 2017). For 

example, Debaeke et al. (2017) argue that climate variability will lead to an upsurge in the regularity, 

patterns and amount of rainfall in some areas, leading to longer crop seasons and higher crop yields. 

However, the study is silent on the effects of climate variability on agricultural productivity. The 

second argument, which is more popular in the literature, states that climate variability will affect 
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agriculture negatively (see, for example, Silvestri et al. 2012; Urgessa 2015; Kumar et al. 2016; 

Ayinde et al. 2017; Huong et al. 2018; Kontgis et al. 2019; Sheng & Xu, 2019). Actually, Ayinde et 

al. (2017) and Huong et al. (2018) project that the negative effects are likely to be felt more in less- 

developed countries due to their overdependence on nature for their agricultural activities, their 

limited non-farm activities and their lack of adequate capacity to invest in adaptation and mitigation 
mechanisms, although the impact might vary from one country to another. In Uganda, however, such 

studies are still in their infancy and scarce, yet agriculture accounts for over 70% of the working 

labour force and is the backbone of the economy. The few existing studies have either covered a 

smaller part of the country (see, for example, Egeru 2012), or have not used household-level data 

(such as Mwaura & Okoboi 2014). The present study thus addresses these gaps in the existing 

literature by focusing on productivity as opposed to output, on a countrywide basis and over time, 

and includes some of the adaptation mechanisms adopted.  

 

3. Methodology 

 

The study estimates the total factor productivity (TFP) derived from the stochastic Cobb–Douglas 

production function (Sheng & Xu 2019). Given that climate variability is not a direct input of 

agricultural production, estimating the total factor productivity function is the appropriate framework 

to establish the effect of climate variability on Uganda’s agricultural productivity (Kumar et al. 2016). 

The theoretical framework was derived by considering a Cobb–Douglas production function, as 

below: 

 

𝑌 = 𝐴𝐾𝛼𝐿𝛽𝑍𝜃,                     (1) 

 

where 𝑌 is the total agricultural output, and 𝐴 is the intercept, which is a measure of productivity. 𝐾 

is capital input, 𝐿 is labour input, while 𝑍 is land input. 𝛼, 𝛽 and 𝜃 are input elasticities. 

 

Total factor productivity (A), which is defined as the ratio of total output to the weighted input index, 

is therefore estimated using the following formula: 

 

𝐴 =
𝑌

𝐾𝛼𝐿𝛽𝑍𝜃                      (2) 

 

Taking natural logs on both sides of Equation (2) yields: 

 

𝑙𝑛𝐴 = 𝑙𝑛𝑌 − (𝛼𝑙𝑛𝐾 + 𝛽𝑙𝑛𝐿 + 𝜃𝑙𝑛𝑍)                  (3) 

 

Introducing a time dimension gives: 

 

𝑙𝑛𝐴𝑡 = 𝑙𝑛𝑌𝑡 − (𝛼𝑙𝑛𝐾𝑡 + 𝛽𝑙𝑛𝐿𝑡 + 𝜃𝑙𝑛𝑍𝑡)                  (4) 

 

Taking the first difference gives the total factor productivity as: 

 
𝐴𝑡−𝐴𝑡−1

𝐴𝑡−1
= 𝑙𝑛𝐴𝑡 − 𝑙𝑛𝐴𝑡−1 =

𝑌𝑡−𝑌𝑡−1

𝑌𝑡−1
− (𝛼

𝐾𝑡−𝐾𝑡−1

𝐾𝑡−1
+ 𝛽

𝐿𝑡−𝐿𝑡−1

𝐿𝑡−1
+ 𝜃

𝑍𝑡−𝑍𝑡−1

𝑍𝑡−1
)              (5) 

 

Econometrically, this can be estimated as: 

 

𝑙𝑛𝑌𝑡  = 𝛼̂𝑙𝑛𝐾𝑡 + 𝛽̂𝑙𝑛𝐿𝑡 + 𝜃𝑙𝑛𝑍𝑡 + 𝛾̂𝑡 + 𝜀𝑡                  (6) 
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𝛾̂ gives the total factor productivity (TFP) estimates. The estimates obtained are thus used as the 

dependent variable for assessing the effect of climate variability on agricultural productivity.  

 

Following other studies, such as those by Muendler (2004), Şeker and Saliola (2018) and Sheng and 

Xu (2019), total factor productivity (TFP) is a function of climate factors (C), household factors (H), 

socioeconomic factors (S), institutional factors (I) and locational factors (G). Putting these together 

yields a theoretical model for the study, as follows: 

 

𝑇𝐹𝑃 = 𝑓(𝐶, 𝐻, 𝑆, 𝐼, 𝐺)                    (7) 

 

3.1 Empirical model and estimation procedure 

 

Following the theoretical model and other earlier studies such as those of Muendler (2004) and Sheng 

and Xu (2019), the empirical model is specified as:  

 

𝑇𝐹𝑃 (𝛾̂) = 𝛼0 + 𝛼1𝐶𝑖𝑡 + 𝛼2𝐻𝑖𝑡 + 𝛼3𝑆𝑖𝑡 + 𝛼4𝐼𝑖𝑡 + 𝛼5𝐺𝑖𝑡 + 𝑢𝑖𝑡,               (8) 

 

where 𝐶 is a vector of climate factors, 𝐻 is a vector of farming household inputs, 𝑆 is a vector of 

socioeconomic factors, 𝐼 is a vector of institutional factors, and 𝐺 are locational factors (residential 

and regional location). A quadratic specification of variability in the precipitation and temperature 

terms caters for the non-linearity and extreme impacts of variability in climate (Massetti & 

Mendelsohn 2011; Bozzola et al. 2018). 

 

Next, precipitation variability was interacted with the availability of extension services to test whether 

extension services empower households to overcome climate variability challenges over time. 

 

𝑇𝑇𝐹 (𝜌̂)𝑖𝑡 = 𝛼0 + 𝛼1𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛼2𝑃𝑝𝑡𝑖𝑡 + 𝛿1𝑇2
𝑖𝑡 + 𝛿2𝑃𝑝𝑡𝑖𝑡

2 + 𝛼3𝐻𝑖𝑡 + 𝛼4𝐼𝑖𝑡 + 𝛼5(𝑃𝑝𝑡𝑖𝑡 ∗
𝐸𝑥𝑡𝑖𝑡) + 𝜀𝑖𝑡,                      (9) 

 

where 𝐸𝑥𝑡𝑖𝑡 represents the availability of extension services to household 𝑖 at time 𝑡.  

 

This model was estimated using the two panel data models of fixed effects and random effects. To 

select between fixed effects and random effects, the Hausman specification test is used with the null 

hypothesis – random effects is the preferred model (Baltagi 2013). The results are also compared with 

those from the pooled OLS. The study corrects errors for potential heteroskedasticity and tests for 

multicollinearity using the observed information matrix (OIM). The study further estimates models 

for each region and for the four commonly grown crops – maize, beans, cassava and banana. These 

crops were selected because they are the most common crops grown across the country (UBoS 2017, 

2018).  

 

3.2 Study variables 

 

The main dependent variable of the study is total factor productivity (TFP), which is obtained by 

dividing an index of real output by an index of combined units of all inputs or factors (Şeker & Saliola 

2018; Sheng & Xu 2019). The same applies for regional and crop-specific estimated models. The 

explanatory variables used in the analysis were divided into three categories. The first category 

consists of the climate variability factors (precipitation and temperature). These have been included 

in the model as a measure of climate variability. The second category includes household 

characteristics, such as gender, age, marital status, size of the household, education level of household 
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head and location of the household. The last category consists of the institutional variables, and in 

this study they include the availability of extension services and access to markets for crops.  

 

Table 1: Definition and measurement of variables  

Variable Definition and measurement 
Expected 

sign 
Literature source 

Total factor 

productivity 

Measures the productivity of the 

agricultural sector as a whole 

Dependent 

variable 

Şeker & Saliola (2018); Sheng 

& Xu (2019). 

Climate variability 

Precipitation variability 
Coefficient of variation of precipitation 

for a period of at least 30 years 
± 

Alem et al. (2010); Arshad et 

al. (2018) 

Temperature variability 

Coefficient of variation for (minimum 

and maximum) temperature for period of 

30 years 

± 
Arslan et al. (2017); Nkegbe & 

Kuunibe (2014) 

Household characteristics 

Household head age Complete years + 
Guloba (2014); Hisali et al. 

(2011) 

Household head 

education level  
Number of years of school  ± 

Kabubo-Mariara & Mulwa 

(2019); Reed et al. (2017) 

Gender of household 

head 
Dummy: 1 = male, 0 otherwise + Ademe et al. (2017) 

HH head marital status Dummy: 1 = married, 0 otherwise ± Zhang et al. (2017) 

HH equipment value 
In Uganda shillings, a measure of capital 

input 
+ Kumar et al. (2016) 

Household size (labour) 
Number of people in the household, a 

measure of labour input  
± Galindo et al. (2015) 

Location of a household Dummy: 1 = urban, 0 otherwise - 
Shikuku et al. 2017); Van 

Passel et al. (2017) 

Institutional factors  

Extension services Dummy: 1 = available, 0 otherwise ± Baya et al. (2019) 

Access to market  Dummy: 1 = yes, 0 otherwise + Zhang et al. (2017) 

 

3.3 Data sources 

 

The study used long-term daily climate data (1979 to 2013) sourced from the United States National 

Oceanic and Atmospheric Administration (NOAA).4 In this section, the climate data are converted 

into monthly and then annual data, before obtaining the coefficients of variation for both precipitation 

and temperature. The study relies on the coefficient of variation of each climate variable as a measure 

of variability. This dataset has been credited for producing accurate climate observations over time 

(Massetti & Mendelsohn 2011; Bozzola et al. 2018). Information on farming household factors and 

institutional factors was obtained from the Uganda National Panel Surveys (UNPS), spanning a 

period of 10 years from 2009 to 2019. Total agricultural output was obtained from the summation of 

all major crop yields that are captured by the Uganda Bureau of Statistics (UBoS) after standard 

conversion into one unit of measurement. These datasets are nationally representative, and the study 

utilises six waves of UNPS (2009/2010, 2010/2011, 2011/2012, 2013/2014, 2015/2016 and 

2018/2019), with each covering on average of 2 500 households, giving a total pool of about 15 000 

observations. This dataset is large and reliable enough to ensure precision of the model estimates. 

The Climate data were matched with the household-level data using household GPS information.5  

 

  

 
4 More information on this climate data is available at http://www.esrl.noaa.gov/psd. The climate data is made available 

by NOAA/OAR/ESRL PSD, Boulder CO, USA. 
5 All households without GPS coordinates and those who did not farm any crop were dropped from the dataset. 

http://www.esrl.noaa.gov/psd


AfJARE Vol 18 No 1 (2023) pp 14–38  Babyenda et al. 

 

 

22 

4. Empirical findings 
 

4.1 Descriptive statistics 

 

Figure 1 shows an increasing trend in both average precipitation and temperature, with the annual 

increase in average temperature being much smaller than that of average precipitation. A similar trend 

in Uganda’s climate was established by Lazzaroni (2012) and Guloba (2014), who also found an 

upward trend in the country’s climatic variables of precipitation and temperature. However, although 

average rainfall is rising, the pattern is unreliable, varied and unevenly distributed across the country 

(Egeru 2012; UBoS 2018). It is clear from Figure 1 that both precipitation and temperature vary, as 

shown by the three line graphs and a non-zero coefficient of variation. The trend analysis across the 

various regions of the country between 1978 and 2014 is shown in the maps (see Figures A1, A2 and 

A3 in Appendix 1). The trends clearly support the existence of climate variability in Uganda; for 

example, the coefficient of variation ranges between 0.3 and 1.3 for precipitation variability. 
 

Extreme variability in precipitation is observable in the areas of the Karamoja, Southwestern (Kigezi 

and Kasese) and Albertine regions of Uganda, with the highest variability in precipitation experienced 

in Karamoja region between 1981 and 2013. The coefficient of variation ranged between 1.00 and 

1.60 in Karamoja region during this period. No area had a precipitation coefficient of variation below 

0.1 (the threshold), hence confirming precipitation variability in Uganda (Arshad et al. 2017). High 

variability in temperature was experienced in the areas surrounding Lake Victoria (Wakiso, Mpiji 

and Mukono) and the Kabaale areas in Southwestern Uganda. This can be attributed largely to the 

changing rainfall patterns, swamp reclamation and deforestation in these areas (Egeru 2012; Guloba 

2014).  

 

     

 
 

Figure 1: Trend analysis of the Uganda’s historical climate variables from 1979 to 2013 
Source: Author’s own calculations based on global weather data downloaded from NOAA (2019) 
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For the rest of the country, the variability ranged between 0.01 and 0.18. The variability in the 

maximum temperature was slightly lower than that of the minimum temperature, although an overall 

non-uniform trend in temperature variability can be observed across the country.  

 

The summary statistics for all study variables used in this study are presented in Table 2 below. 
 

Table 2: Summary statistics 
Study variables Mean Std dev. Min Max 

Total factor productivity 2.99 3.57 1.72E-06 36.81 

Precipitation variability 0.33 0.17 0.002 1.55 

Minimum temperature variability 0.05 0.02 0.02 0.19 

Maximum temperature variability 0.08 0.01 0.05 0.16 

Access to extension services 0.44 0.50 0 1 

Access to market 0.81 0.40 0 1 

Household head age  48.42 15.01 14 100 

Gender of HH head (1 = male) 0.70 0.46 0 1 

Location (1 = urban, 0 = rural) 0.13 0.33 0 1 

Marital status (1 = married) 0.74 0.44 0 1 

Education (years of education) 5.34 3.82 0 17 

Household size (labour input) 11.09 13.02 1 72 

Household assets (capital input) 48 039.78 252 531.4 0 16 700 000 

Source: Author’s calculations based on UNPS datasets (2009 to 2019) and world climate data 

 

The summary statistics show that the climate variability variables (precipitation and temperature) 

have non-zero means, implying that there indeed is variability in the climate data, as shown earlier in 

the trend analysis (Figure 1). On average, the farming household heads in the dataset had attained at 

least five years of education, which is equivalent to some primary education. The majority of the 

farmers (56%) did not have access to agricultural extension services, given that only 44% had access 

to extension services. This is of great concern, given the importance of extension services in 

agriculture and their perceived role in empowering farmers to improve their productivity and build 

resilience against climate variability and its effects (Lazzaroni 2012). 

 

This means that there is a need for more effort to be made in the delivery of extension services by the 

government through the Ministry of Agriculture, Animal Industry and Fisheries. A total of 81% of 

the households had access to markets for their crop products. The statistics also show that the majority 

of the farming household heads (76%) were married, with 70% of the households being headed by a 

male.  

 

The correlation matrix (Appendix 2) shows that the study variables do not suffer from 

multicollinearity and thus are suitable for inclusion in the empirical analysis.  

 

4.2 Empirical results 

 

The effect of variability in climate on agricultural productivity is presented in Table 3. The standard 

errors have been corrected for any suspected serial correlation and heteroscedasticity. The results of 

the observed information matrix confirm the absence of multicollinearity among the regressors, as 

shown by the correlation matrix in the appendices. The Chow test results indicate that the estimated 

models are statistically significant, implying that the variables that have been included jointly explain 

changes in agricultural productivity as measured by total factor productivity. The Roy-Zellner test 

results shows that the error term is spherical, implying that the random error term is uncorrelated with 

the model regressors (Baltagi 2013). This therefore confirms that our model estimates are robust, 

consistent and efficient and hence reliable and valid for policy recommendations.  
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Table 3: Regression results  
Dependent variable (total factor productivity) Fixed effects Random effects Pooled OLS 

Precipitation variability -4.22*** -4.14*** -4.14*** 

 (1.42) (1.35) (1.42) 

Precipitation squared 2.24** 2.36** 2.36** 

 (1.10) (1.04) (1.11) 

Min temp variability 11.80* 13.61** 13.61** 

 (6.67) (6.43) (6.19) 

Minimum temp squared -75.70 -92.30 -92.30* 

 (59.59) (57.40) (54.17) 

Max temp variability -25.60* -25.32* -25.32 

 (15.54) (14.94) (15.78) 

Max temp squared 144.45 146.42* 146.42 

 (92.62) (88.90) (95.18) 

Household age -0.02 0.03 0.03 

 (0.03) (0.02) (0.02) 

Household age squared -0.00 -0.00* -0.00 

 (0.00) (0.00) (0.00) 

Gender of household head (male) 0.72*** 0.22* 0.22 

 (0.20) (0.13) (0.17) 

Location (1 = urban, 0 = rural) -0.62*** -0.77*** -0.77*** 

 (0.21) (0.13) (0.16) 

Marital status (married) 0.80*** 0.59*** 0.59*** 

 (0.21) (0.14) (0.18) 

Education of household head (years) 0.10*** 0.03** 0.03* 

 (0.02) (0.01) (0.02) 

Access to extension services 0.02** 0.02 0.02 

 (0.03) (0.23) (0.25) 

Access to market  0.06 0.05 0.05 

 (0.07) (0.07) (0.07) 

Precipitation variability*extension services 0.98** 0.84** 0.84** 

 (0.42) (0.40) (0.42) 

Constant 5.78*** 3.73*** 3.73*** 

 (1.14) (0.87) (0.95) 

Observations 12 706 12 706 12 706 

Number of households 2 947 2 947 2 947 

Houseman test (chi2(14))                101.83*** 

F(2946, 9744)  3.91***   

Note: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1 

Source: Author’s calculations based on UNPS datasets (2009 to 2019) and world climate data 

 

4.3 Discussion of results 

 

The Hausman specification test results suggest that the results of the fixed-effects model are 

consistent with the dataset. This is because the test statistic rejects the null hypothesis that the random- 

effects model is the preferred model at the 1% level of significance, and hence only the results of the 

fixed-effects model are interpreted and discussed.  

 

The results show a significant nonlinear link between precipitation variability and agricultural 

productivity in Uganda. This is because both the linear and the quadratic terms of precipitation are 

statistically significant. The coefficient of the linear precipitation variability term is negative and 

statistically significant. This suggests that variability in precipitation reduces agricultural productivity 

in the initial stages, but, as variability increases, the farmers’ productivity starts to increase, given 

that the coefficient of the squared precipitation variability term is positive and statistically significant. 

The turning point is observed when the coefficient of precipitation variability is 1.88. This U-shaped 
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relationship between variability in precipitation and the total agricultural factor productivity is 

consistent with the results of earlier studies (such as Mendelsohn 2014; Abidoye et al. 2017b; Ademe 

et al. 2017; Baya et al. 2019). For example, Baya et al. (2019) argue that, as precipitation variability 

increases, farming households come to understand the weather changes and start to practise 

adaptation measures or strategies to minimise the effects of a varying climate, although this is 
sometimes unintended. Similarly, Ali and Erenstein (2017) note that, as climate varies, farmers resort 

to early planting, and sometimes planting alternating crops that are tolerant to precipitation variability. 

They also construct dams in valleys and other water catchment areas. Thus, just as our study findings 

tend to imply, it appears that that some farmers adapt to varying climatic conditions unknowingly 

(autonomous adaptation), while others adapt knowingly or with intent (planned adaptation). 

 

However, the study findings contradict those of Lazzaroni (2012), who found a non-significant 

relationship between rainfall variability and agriculture in Uganda. Lazzaroni argues that the adverse 

effect of deviations in Uganda’s rainfall levels is being offset by land productivity, and thus the 

arguments in the literature – that rainfall variability reduces agricultural productivity – are 

exaggerated. Her findings are surprising, given the overreliance of Uganda’s agricultural sector on 

natural conditions, with few farming households using irrigation as an alternative in the light of 

rainfall variability and unreliability. However, this finding could be due to the time scope (one year) 

of the weather data used, and the fact that the study considered only rainfall as opposed to 

precipitation, which combines many components other than rainfall, such as humidity, fog and 

moisture. All of these play a big role in influencing the productivity of the agricultural sector. Our 

findings also corroborate the predictions of Cuni-Sanchez et al. (2011), that variability in precipitation 

levels is likely to have a substantial negative effect on agricultural productivity in developing 

countries, which, like Uganda, are located in the tropics and are very sensitive to changes in climate. 

 

The study uncovers a statistically weak significant impact of minimum and maximum temperature 

variability on agricultural productivity in Uganda. The results are mixed, with the coefficients of 

variability in minimum temperature suggesting a weak positive impact, while those of maximum 

temperature suggest a weak negative impact. These findings tend to support those of Arslan et al. 

(2017) in Tanzania. These authors established that changes in temperature only affect agricultural 

yields or productivity if the increasing temperature exceeds the threshold of crop-specific heat stress. 

The results further suggest that Uganda’s temperature is changing, and that measures therefore should 

be devised to overcome the likely negative effects on agriculture, which until now has been the largest 

employer of Ugandans and the main source of foreign exchange.  

 

The study further investigated the effect of key selected household variables on the productivity of 

the agricultural sector. This follows the argument by Hlahla et al. (2019), namely that the agricultural 

productivity effects due to climate variability are shaped by household-specific and socioeconomic 

factors, such as the location of the household and the household head’s level of education, measured 

by years spent at school. The results show that agricultural productivity increases with the education 

level of the household head. This corroborates the findings of previous studies, such as those of Seo 

and Mendelsohn (2008), Reed et al. (2017) and Sheng and Xu (2019), among others. Reed et al. 

(2017) argue that education is important in enabling farming households to adopt better methods of 

farming, correctly predict climatic conditions, and thus plan accordingly, which in turn increases their 

productivity in comparison to that of uneducated farmers. More so, education increases the 

probability of an individual to obtain non-farm employment, such as in the industrial and service 

sectors, unlike their uneducated counterparts, who have to depend on agricultural or nature-based 

activities. The study results further indicate that agricultural productivity is likely to be lower if the 

farming household is in an urban locality compared to being in a rural area. This contradicts the 

results of the study by Alam et al. (2014), who established that urban-based farmers tend to be more 
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productive than those in rural areas due to the use of advanced farming methods, and exposure to and 

practice of intensive agricultural activities because of the limited available farmland in urban areas. 

These farming methods are uncommon among rural farmers. In Uganda’s case, however, agriculture 

is largely a rural-based sector, and thus all programmes and interventions aimed at enhancing 

agricultural productivity target mainly rural farmers (UBoS 2018). This could partly explain why the 
findings of this study show that farmers based in rural areas are more productive than their 

counterparts in urban areas. However, the study shows that total factor productivity increases when 

the farming household head is married as opposed to being unmarried. 

 

The results show that access to extension services increases total agricultural productivity in Uganda 

by 0.02 percentage points, other factors held constant. This outcome is in line with Reed et al. (2017), 

who argue that the availability of extension services increases farm productivity among farmers. This 

supports our earlier argument, that Uganda’s Ministry of Agriculture, Animal, Industry and Fisheries 

(MAAIF) should provide extension services to all farmers throughout the country. In addition, the 

interaction between precipitation variability and access to extension services in the model yields a 

significant positive impact on productivity. This implies that access to extension services offsets the 

negative impact of precipitation variability on the productivity of the farming households. This is true 

following the arguments of earlier authors, such as Urgessa (2015) and Folayan (2017), who state 

that extension services can help to mitigate the adverse effects of variability in climate through the 

skills and assistance offered to farmers in the form of extension services. Farmers can easily learn 

how to improve their productivity, despite the presence of variability in climate. 

 

4.4 Results by region 

 

Separate models were estimated for each of the four main regions of Uganda – Central, Eastern, 

Western and Northern – with the aim of identifying the region most vulnerable to climate variability 

with a view to informing targeted aid policy formulation, implementation and planning (see Table 4). 

 

The regional results (Table 5) show that the size of the impact of precipitation variability on 

agricultural productivity in Uganda is not uniform across the four regions. The results show that the 

impact is higher in Eastern Uganda, followed by the central region. This implies that, in comparison 

to other regions, Eastern Uganda is more vulnerable to climate variability. This region occasionally 

faces severe occurrences of prolonged drought, landslides and floods in comparison to the other 

regions in the country (Uganda National Meteorological Authority [UNMA] 2019). These severely 

affect agriculture in terms of the realised yields per hectare (Guloba 2014). The results further show 

that access to extension services increases farmers’ productivity across all regions of the country and, 

if it is applied well in Eastern Uganda, it would help to offset the effect of variability in precipitation 

on productivity in the region. 
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Table 4: Regression results by region (dependent variable: total factor productivity)  
Variables Central Eastern Western Northern 

Precipitation variability -6.11** -7.50** -4.73* -3.40* 

 (3.70) (2.94) (2.51) (2.00) 

Precipitation variability squared 4.61 3.20 3.27* 2.95* 

 (2.90) (2.29) (1.87) (1.54) 

Min temp variability 15.20 22.79 1.52 -0.61 

 (11.11) (14.45) (16.73) (8.37) 

Min temp variability squared -118.16 -162.97 33.70 -1.87 

 (88.01) (128.52) (158.61) (67.85) 

Maximum temp variability -34.60 -71.20** 9.75 -10.92 

 (33.67) (32.78) (38.20) (20.74) 

Max temp variability squared 196.95 393.32** -38.81 42.34 

 (199.70) (195.63) (238.26) (120.42) 

Age of HH head -0.13 -0.28** 0.16 0.00 

 (0.09) (0.13) (0.11) (0.07) 

Age squared 0.00 0.00 -0.00* -0.00 

 (0.00) (0.00) (0.00) (0.00) 

Gender of HH head (male) 1.03 2.58*** -0.94 0.31 

 (0.64) (0.75) (0.74) (0.42) 

Household location (urban) -1.03 1.48*** 0.70 -1.00** 

 (0.70) (0.47) (0.77) (0.44) 

HH head marital status (married) 1.25** -1.66** 1.64 -0.28 

 (0.59) (0.78) (1.13) (0.43) 

HH head education level (years) 0.22*** 0.02 0.04 0.07 

 (0.08) (0.07) (0.08) (0.06) 

Access to extension services 0.60** 0.97** 0.58** 0.03** 

 (0.46) (0.51) (0.50) (0.30) 

Access to market  0.27 -0.14 -0.16 0.19** 

 (0.17) (0.15) (0.12) (0.09) 

Precipitation variability*extension services 1.24 1.86** 0.18 0.21 

 (1.11) (0.87) (0.87) (0.54) 

Constant 11.08*** 17.53*** -0.53 2.28 

 (3.00) (3.93) (3.19) (2.17) 

Observations 3 259 3 090 3 181 3 176 

R-squared 0.07 0.04 0.03 0.01 

Number of households 790 744 764 762 

Notes: Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1 

Source: Author’s computations based on UNPS datasets (2009 to 2019) and world climate data 

 

4.5 Results by major crops 

 

The study further estimated separate models for the four common crops grown by the majority of the 

farmers in Uganda as per the Uganda Bureau of Statistics records. These crops are maize, beans, 

banana (locally known as matooke) and cassava. The dependent variable for each crop is total factor 

productivity, derived from estimating the stochastic production function of each crop. The standard 

errors are robust and clustered at the household level to cater for heteroscedasticity.  

 

The results indicate that variability in precipitation has a significant hill-shaped relationship with total 

factor productivity for beans and banana, a significant U-shaped relationship with total factor 

productivity for cassava, and no significant relationship with that of maize. These findings are in line 

with those of Adhikari et al. (2015), who note that changes in climate would likely affect crops such 

as maize, cassava, banana and beans if farmers of these crops fail to adapt to these changes in time. 

Similarly, our findings support the arguments of Van Asten et al. (2011), who noted that bananas, 

unlike other crops, require a consistent supply of water to sustain their green vegetation and shallow 
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root system. Therefore, a prolonged change in water patterns might negatively affect banana yields, 

and thus productivity. According to Arslan et al. (2017), beans and maize require relatively less water 

during the flowering period, as more rain or water destroys the flowering process. This greatly affects 

the yields realised and hence the productivity returns. However, Sheng and Xu (2019) found a large 

drop in yields of many crops, including maize, due to climate variability in Asia and in China, which 
contradicts the findings of our study findings, which found a non-significant impact of all climate 

variability components on maize productivity.  

 

Table 5: Regression results per major crop grown 
Variables Maize Beans Cassava Banana 

Precipitation variability 0.79 2.93* -3.22** 1.55** 

 (1.86) (1.64) (1.28) (0.63) 

Precipitation variability squared -0.59 -2.39* 2.34** -0.81* 

 (1.45) (1.25) (1.01) (0.47) 

Min temp variability 3.08 0.70 -0.01 -4.03* 

 (6.10) (5.52) (7.94) (2.32) 

Min temp variability squared -48.32 -7.14 19.79 38.37* 

 (47.48) (44.20) (74.65) (20.13) 

Maximum temp variability -5.68 -15.56 8.39 -7.27 

 (19.37) (16.86) (14.81) (6.87) 

Max temp variability squared 38.45 67.31 -46.67 31.13 

 (116.71) (101.99) (88.88) (41.28) 

Age of HH head 0.10* 0.13* -0.02 0.03 

 (0.06) (0.08) (0.06) (0.02) 

Age squared -0.00 -0.00 0.00 -0.00 

 (0.00) (0.00) (0.00) (0.00) 

Gender of HH head (male) -0.29 0.41 -0.01 -0.26* 

 (0.42) (0.32) (0.43) (0.15) 

Household location (urban) -0.11 -0.16 -0.50 0.32** 

 (0.44) (0.33) (0.47) (0.15) 

HH head marital status (married) 0.10 -0.52 0.60 0.28 

 (0.46) (0.37) (0.37) (0.23) 

HH head education level (years) 0.05 0.00 0.08* 0.01 

 (0.05) (0.04) (0.05) (0.02) 

Access to extension services 0.01** 0.16** 0.56** 0.37*** 

 (0.03) (0.02) (0.24) (0.11) 

Access to market  -0.13 -0.03 0.04 0.07** 

 (0.09) (0.08) (0.06) (0.03) 

Precipitation variability*extension services 0.47 0.22 -0.04 0.51** 

 (0.52) (0.48) (0.42) (0.20) 

Constant -2.57 -3.32 1.13 -1.34* 

 (1.92) (2.16) (1.72) (0.77) 

Observations 7 164 7 492 5 731 6 493 

R-squared 0.01 0.01 0.03 0.02 

Number of households 2 091 2 067 1 779 1 654 

Notes: Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1 

Source: Author’s calculations based on UNPS datasets (2009 to 2019) and world climate data 

 

Variability in minimum temperature has a significant U-shaped relationship with banana productivity, 

but has no significant impact on the productivity of maize, beans and cassava. This implies that 

variations in minimum temperature only alter banana yields, and not those of maize, beans and 

cassava. Beans and maize require relatively higher temperatures during the flowering stage, while 

cassava is relatively tolerant to changes in temperature, including a rise in temperature (Dhakal 2016). 

The findings on banana productivity due to a variability in minimum temperature are similar to those 

of Van Asten et al. (2011), who established that a rise in temperature as a result of prolonged drought 
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is one of the main causes for banana yield loss in the East African region, which includes Uganda. 

Similarly, Adhikari et al. (2015) found that a rise in temperature might lead to a 10% loss in banana 

yields. Therefore, the results in this section seem to imply that, as a crop, banana requires relatively 

higher temperatures to achieve higher yields per hectare.  

 
As predicted in previous studies, access to extension services increased the productivity of all crops 

under study in this paper. Extension services are important in providing advice and imparting skills 

and knowledge on various issues to farmers. The results further show that the productivity of all crops 

under study in this paper are not sensitive to the level of education of the household head, with the 

exception of cassava. This is quite surprising, given that education is expected to increase the 

productivity of the farmers in relation to all crops (Dhakal 2016; Arshad et al. 2018). However, it 

should also be noted that the majority of the farmers tend to learn on the job through their experience, 

and from peers or government agricultural officials such as commercial, production and extension 

officers. The government of Uganda has introduced many programmes, including a plan for the 

modernisation of agriculture, national agricultural advisory services and an operation for wealth 

creation, all aimed at equipping farmers with the necessary skills and information to improve their 

productivity, especially in the four crops under study in this paper. This could therefore explain why 

the level of classroom education of the household head does not play a significant role in the yields 

per hectare realised for beans, maize, cassava and banana. 

 

5. Conclusions and policy implications 

 

The analysis in and findings of this study shed light on the vulnerability of Uganda’s farming 

households, regions and selected key crops to climate variability. The descriptive statistics in this 

paper show that the farming household heads, on average, had 5.3 years of education (some primary 

education as per the UBoS classification). However, 56% of the farming households were not 

accessing agricultural extension services, although 81% of the farming households had access to 

markets for their crops. This follows the fact that the government of Uganda has built markets across 

the country and further improved the road network to facilitate the movement of goods and services 

across the country. On the other hand, the trend analysis supports the existence of climate variability 

in all regions of Uganda from 1979 to 2013, as shown by a non-zero coefficient of variation for the 

two components of climate variability – precipitation and temperature. Coefficients of variation are 

the most recognised statistical measure for variability in most statistical and empirical studies on the 

topic (Gorst et al. 2018).  

 

The results of the empirical regression show that variability in precipitation has a non-linear U-shaped 

(convex) relationship with Uganda’s agricultural productivity, while access to extension services 

positively increases agricultural productivity and that of the selected crops under study. The regional 

analysis, on the other hand, indicates a non-uniform impact of climate variability on agricultural 

productivity across the four regions of Uganda, with the eastern region being the most affected region. 

The crop-specific results show that beans and bananas are more sensitive to variability in climate 

compared to maize and cassava. This implies that maize and cassava, in comparison to beans and 

banana, are more resilient to climate variability and its effects. The availability of extension services 

and the education level of the household head have positive effects on agricultural productivity, while 

the effect on urban-based farmers was negative. Gender, marital status and age of the household head 

had a statistically insignificant impact on productivity. The automatic (or unintended) adaptation to 

climate variability by some farming households as a result of the changing climate may improve 

agricultural productivity. The positive significant coefficient of the interaction term (precipitation 

variability and access to extension services) confirms the positive role that access to extension 
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services plays in offsetting the negative effects of variability in precipitation on agricultural 

productivity in the country.  

 

This study therefore contributes to the stock of existing literature on the impact of climate variability 

on agricultural productivity by combining both household-level survey data and long-term climate 
data. This is important in accounting for agricultural seasonal complexities and solves the model 

selection bias that may lead to inconsistent, inefficient and unreliable model estimates, which usually 

result when household-specific characteristics are omitted in the analysis. This study further provides 

a methodological innovation in which a total factor productivity is derived from estimating a 

stochastic production function. This is aimed at establishing the actual impact of changes in climate 

on total agricultural productivity and specific crop productivity in Uganda. The study thus 

recommends that the government of Uganda should design and adopt policies and measures aimed at 

combating variabilities in climate and their effects across the entire country. For example, there is a 

need for deliberate efforts geared at ensuring that all farming households in the country have access 

to extension services. Secondly, the negative impact of precipitation variability on agricultural 

productivity and crop yields can be minimised through regular farmer education programmes. This 

follows the fact that education improves the productivity of farmers (Nagasha et al. 2019). Through 

education, farmers can learn ways of adapting to climate variability, including how to apply irrigation, 

plant drought-resistant crops and construct valley dams, among others. 

Acknowledgements 

 

We would like to convey special thanks to the African Economic Research Consortium (AERC), for 

funding this research project. Also, many thanks to the AERC Bi-annual Conference participants in 

both Cape Town in June 2019 and in Nairobi in December 2019, and the School of Economics, 

University of Nairobi, for the useful and constructive contributions to the improvement of this paper. 

We thank all the reviewers for their comments, which helped to improve this work. 

 

References  

 

Abid M, Schneider UA & Scheffran J, 2016. Adaptation to climate change and its impacts on food 

productivity and crop income: Perspectives of farmers in rural Pakistan. Journal of Rural Studies 

47(A): 254–66. https://doi.org/10.1016/j.jrurstud.2016.08.005 

Abidoye BO, Kurukulasuriya P, Reed B & Mendelsohn R, 2017a. Structural Ricardian analysis of 

South-East Asian agriculture. Climate Change Economics 8(4): 1792001. 

https://doi.org/10.1142/s2010007817920014 

Abidoye BO, Mendelsohn R, Ahmed S, Amanullah S, Chasidpon C, Baker L, Dobias R, Ghosh B, 

Gunaratne LHP, Hedeyetullah MM, Mungatana E et al., 2017b. South-East Asian Ricardian 

studies: Bangladesh, Sri Lanka, Thailand, and Vietnam. Climate Change Economics 8(3): 

1740004. https://doi.org/10.1142/s2010007817400048 

Adade P, Crespo O & Abu M, 2019. Climate risk management adapting to changing climate through 

improving adaptive capacity at the local level – The case of smallholder horticultural producers in 

Ghana. Climate Risk Management, 23: 124–35. https://doi.org/10.1016/j.crm.2018.12.004 

Ademe A, Kassa B, Goshu D & Mwanjalolo M, 2017. Impact of climate variability on cool weather 

crop yield in Ethiopia. International Journal of Agricultural Management and Development 7(4): 

415–28.  

Adhikari U, Nejadhashemi AP & Woznicki SA, 2015. Climate change and eastern Africa: A review 

of impact on major crops. Food and Energy Security 4(2): 110–32. https://doi.org/10.1002/fes3.61 



AfJARE Vol 18 No 1 (2023) pp 14–38  Babyenda et al. 

 

 

31 

Alam MM, Siwar C, Talib B & Mohd Ekhwan T, 2014. Impacts of climatic changes on paddy 

production in Malaysia: Micro study on IADA at North West Selangor. Research Journal of 

Environmental and Earth Sciences 6(5): 251–8. 

Alem Y, Bezabih M, Kassie M & Zikhali P, 2010. Does fertilizer use respond to rainfall variability? 

Panel data evidence from Ethiopia. Agricultural Economics 41(2): 165–75.  
Ali A & Erenstein O, 2017. Assessing farmer use of climate change adaptation practices and impacts 

on food security and poverty in Pakistan. Climate Risk Management 16: 183–94. 

https://doi.org/10.1016/j.crm.2016.12.001 

Arshad M, Amjath-Babu TS, Aravindakshan S, Krupnik TJ, Toussaint V, Kächele H & Müller K, 

2018. Climatic variability and thermal stress in Pakistan’s rice and wheat systems: A stochastic 

frontier and quantile regression analysis of economic efficiency. Ecological Indicators 89: 496–

506. https://doi.org/10.1016/j.ecolind.2017.12.014 

Arshad M, Kächele H, Krupnik TJ, Amjath-Babu TS, Aravindakshan S, Abbas A, Mehmood Y & 

Müller K, 2017. Climate variability, farmland value, and farmers’ perceptions of climate change: 

implications for adaptation in rural Pakistan. International Journal of Sustainable Development 

and World Ecology 24(6): 532–44. https://doi.org/10.1080/13504509.2016.1254689 

Arslan A, Belotti F & Lipper L, 2017. Smallholder productivity and weather shocks: Adoption and 

impact of widely promoted agricultural practices in Tanzania. Food Policy 69: 68–81. 

https://doi.org/10.1016/j.foodpol.2017.03.005 

Aydinalp C & Cresser MS, 2008. The effects of global climate change on agriculture. American-

Eurasian Journal of Agricultural & Environmental Sciences 3(5): 672–6. 

Ayinde OE, Muchie M & Olatunji GB, 2017. Effect of climate change on agricultural productivity in 

Nigeria: A co-integration model approach. Journal of Human Ecology 35(3): 189–94. 

https://doi.org/10.1080/09709274.2011.11906406 

Baltagi HB, 2013. Econometric analysis of panel data. Fifth edition. Chichester UK: John Wiley & 

Sons. 

Banerjee S, Hussain A, Tuladhar S & Mishra A, 2019. Building capacities of women for climate 

change adaptation : Insights from migrant-sending households in Nepal. Climatic Change 157: 

587–609 

Baya BB, Nzeadibe TC, Nwosu EO & Uzomah NL, 2019. Climate change, food insecurity and 

household adaptation mechanisms in Amaro Ward, Southern Region of Ethiopia. Journal of 

Agricultural Extension and Rural Development 11(5): 106–13. 

https://doi.org/10.5897/JAERD2019.1042 

Bozzola, M., Massetti, E., Mendelsohn, R., & Capitanio, F. (2018a). A Ricardian analysis of the 

impact of climate change on Italian agriculture. European Review of Agricultural Economics 

45(1): 57–79. https://doi.org/10.1093/erae/jbx023 

Cotter J, Tirado R & Apoteker A, 2010. Climate change and rice production: Biodiversity is the 

answer. Poster presented at the 3rd International Rice Congress, 8–12 November, Hanoi, Vietnam. 

Cuni-Sanchez A, Omeny P, Pfeifer M, Olaka L, Mamo MB, Marchant R & Burgess ND, 2019. 

Climate change and pastoralists: Perceptions and adaptation in montane Kenya. Climate and 

Development 11(6): 513–24. 

Debaeke P, Casadebaig P, Flenet F & Langlade N, 2017. Sunflower crop and climate change: 

Vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL: Oilseeds & 

Fats, Crops and Lipids 24(1): D102. https://doi.org/10.1051/ocl/2016052 

Dhakal S, Sedhain G & Dhakal S, 2016. Climate change impact and adaptation practices in 

agriculture: A case study of Rautahat District, Nepal. Climate 4(4): 63. 

https://doi.org/10.3390/cli4040063 

Egeru A, 2012. Role of indigenous knowledge in climate change adaptation: A case study of the Teso 

Su-Region, Eastern Uganda. Indian Journal of Traditional Knowledge 11(2): 217–24. 



AfJARE Vol 18 No 1 (2023) pp 14–38  Babyenda et al. 

 

 

32 

Folayan A, 2017. Rural accessibility theory of agricultural productivity. International Journal of 

Transport Economics / Rivista internazionale di economia dei trasporti 12(2): 165–74. 

https://www.jstor.org/stable/42748168 

Food and Agriculture Organization of the United Nations (FAO), 2008. Climate change and food 

security: A framework document. Rome: Food and Agriculture Organization of the United 
Nations.  

Galindo LM, Reyes O & Alatorre JE, 2015. Climate change, irrigation and agricultural activities in 

Mexico: A Ricardian analysis with panel data. Journal of Development and Agricultural 

Economics 7(7): 262–73. https://doi.org/10.5897/jdae2015.0650 

Geng X, Wang F, Ren W & Hao Z, 2019. Climate change impacts on winter wheat yield in northern 

China. Advances in Meteorology 2019: Art. 2767018. https://doi.org/10.1155/2019/2767018 

Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K & Wiltshire A, 2010. Implications of climate 

change for agricultural productivity in the early twenty-first century. Philosophical Transactions 

of the Royal Society B: Biological Sciences 365(1554): 2973–89. 

Gorst A, Dehlavi A & Groom B, 2018. Crop productivity and adaptation to climate change in 

Pakistan. Environment and Development Economics 23(6): 679–701. 

https://doi.org/10.1017/s1355770x18000232 

Greene WH, 2012. Econometric analysis. Seventh edition. Harlow UK: Pearson Education Limited. 

Guloba M, 2014. Analysis of adaptation to climate variability and change in Uganda: A gender and 

household welfare perspective. Exeter UK: Academic Publishing.  

Hisali E, Birungi P & Buyinza F, 2011. Adaptation to climate change in Uganda: Evidence from 

micro level data. Global Environmental Change 21(4): 1245–61. 

Hlahla S, Nel A & Hill TR, 2019. Assessing municipal-level governance responses to climate change 

in KwaZulu-Natal, South Africa. Journal of Environmental Planning and Management 62(6): 

1089–107. https://doi.org/10.1080/09640568.2018.1466693 

Huong NTL, Bo YS & Fahad S, 2018. Economic impact of climate change on agriculture using 

Ricardian approach: A case of northwest Vietnam. Journal of the Saudi Society of Agricultural 

Sciences 18(4): 449–57. https://doi.org/10.1016/j.jssas.2018.02.006 

Kabubo-Mariara J & Karanja FK, 2007. The economic impact of climate change on Kenyan crop 

agriculture: A Ricardian approach. Global and Planetary Change 57(3–4): 319–30. 

https://doi.org/10.1016/j.gloplacha.2007.01.002 

Kabubo-Mariara J & Mulwa R, 2019. Adaptation to climate change and climate variability and its 

implications for household food security in Kenya. Food Security 11: 1289–1304. 

Kabubo-Mariara J, Mulwa RM & Di Falco S, 2016. The impact of climate change on food calorie 

production and nutritional poverty: Evidence from Kenya. Environment for Development 

Discussion Paper Series (EID DP) 16-26. https://www.jstor.org/stable/resrep15061?seq=1 

Kahsay GA & Hansen LG, 2016. The effect of climate change and adaptation policy on agricultural 

production in Eastern Africa. Ecological Economics 121: 54–64. 

https://doi.org/10.1016/j.ecolecon.2015.11.016 

Kontgis C, Schneider A, Ozdogan M, Kucharik C, Tri VPD, Duc NH & Schatz J, 2019. Climate 

change impacts on rice productivity in the Mekong River Delta. Applied Geography, 102: 71–83. 

https://doi.org/10.1016/j.apgeog.2018.12.004 

Kumar A, Sharma P & Joshi S, 2016. Assessing the impacts of climate change on land productivity 

in Indian crop agriculture: An evidence from panel data analysis. Journal of Agricultural Science 

and Technology 18: 1–13. 

Kurukulasuriya P & Mendelsohn R, 2017. Impact and adaptation of South-East Asian farmers to 

climate change: Conclusions and policy recommendations. Climate Change Economics 8(3): 

1740007. 

Lazzaroni S, 2012. Weather variability and food consumption: Evidence from Uganda. MA Research 

Paper, International Institute of Social Studies, The Hague, The Netherlands. 

https://doi.org/10.1155/2019/2767018
callto:(1554),%202973-2989
callto:(4),%201245-1261
callto:(03),%201740007
callto:(03),%201740007


AfJARE Vol 18 No 1 (2023) pp 14–38  Babyenda et al. 

 

 

33 

Lee J, Nadolnyak D & Hartarska V, 2012. Impact of climate change on agricultural production in 

Asian countries: Evidence from panel study. Paper read at the Southern Agricultural Economics 

Association Annual Meeting, 4–7 February, Birmingham AL. 

https://core.ac.uk/download/pdf/6718824.pdf 

Limantol AM, Keith BE, Azabre BA & Lennartz B. 2016. Farmers’ perception and adaptation 
practice to climate variability and change: A case study of the Vea catchment in Ghana. 

SpringerPlus 5(1): Article #830. https://doi.org/10.1186/s40064-016-2433-9 

Ludena C & Mejia C, 2012. Climate change, agricultural productivity and its impacts on the food 

industry: A general equilibrium analysis. International Association of Agricultural Economists 

(IAAE) Triennial Conference, 18–24 August. Foz do Iguacu, Brazil. 

http://ideas.repec.org/p/ags/iaae12/126851.html 

Mamane Bello GH & Malam Maman MN, 2015. A Ricardian analysis of the impact of temperature 

and rainfall variability on agriculture in Dosso and Maradi regions of Niger Republic. Agricultural 

Sciences 6(7): 724–33. https://doi.org/10.4236/as.2015.67070 

Massetti E & Mendelsohn R, 2011. Estimating Ricardian models with panel data. Climate Change 

Economics 2(4): 301–19. https://doi.org/10.1142/S2010007811000322 

Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia 

W, Péan C, Pidcock R, Connors S, Matthews JBR et al. (eds.), 2018. Summary for policymakers. 

In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming. 

Cambridge University Press, Cambridge: IPCC. https://doi.org/10.1017/9781009157940.001 

Mendelsohn R, 2011. Economic estimates of the damages caused by climate change. In Dryzek JS, 

Norgaard RB & Schlosbert D (eds), The Oxford handbook of climate change and society. Oxford: 

Oxford University Press. 

Mendelsohn R, 2014. The impact of climate change on agriculture in Asia. Journal of Integrative 

Agriculture 13(4): 660–5. https://doi.org/10.1016/S2095-3119(13)60701-7 

Mendelsohn RO & Massetti E, 2017. The use of cross-sectional analysis to measure climate impacts 

on agriculture: Theory and evidence. Review of Environment rgal Economics and Policy, 11(2), 

280–298. https://doi.org/10.1093/reep/rex017 

Mendelsohn R & Nordhaus W, 2010. The impact of global warming on agriculture: A Ricardian 

analysis: Reply. American Economic Review 89(4): 1046–8. 

https://doi.org/10.1257/aer.89.4.1046 

Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), 2018. The national adaptation plan 

for the agricultural sector. Kampala, Uganda: MAAIF. 

Ministry of Water and Environment (MoWE), 2015. Uganda national climate change policy. 

https://www.mwe.go.ug/sites/default/files/library/National%20Climate%20Change%20Policy%

20April%202015%20final.pdf  

Mottet A, Henderson B, Opio C, Falcucci A, Tempio G, Silvestri S, Chesterman S & Gerber PJ, 2017. 

Climate change mitigation and productivity gains in livestock supply chains: Insights from 

regional case studies. Regional Environmental Change 17(1): 129–41. 

https://doi.org/10.1007/s10113-016-0986-3 

Mubiru DN, Radeny M, Kyazze FB, Zziwa A, Lwasa J, Kinyangi J & Mungai C, 2018. Climate 

trends, risks and coping strategies in smallholder farming systems in Uganda. Climate Risk 

Management 22: 4–21. https://doi.org/10.1016/j.crm.2018.08.004 

Muendler M-A, 2004. Estimating production functions when productivity change is endogenous. 

CESifo Working Paper No. 1143, Center for Economic Studies, University of Munich, Munich, 

Germany. 

Mwangi M & Kariuki S, 2015. Factors determining adoption of mew agricultural technology by 

smallholder farmers in developing countries. Journal of Economic and Sustainable Development, 

6(5), 208–16. https://core.ac.uk/download/pdf/234646919.pdf 



AfJARE Vol 18 No 1 (2023) pp 14–38  Babyenda et al. 

 

 

34 

Mwaura FM & Okoboi G, 2014. Climate variability and crop production in Uganda. Journal of 

Sustainable Development 7(2): 159–72. https://doi.org/10.5539/jsd.v7n2p159 

Nabikolo D, Bashaasha B, Mangheni M & Majaliwa J, 2012. Determinants of climate change 

adaptation among male and female headed farm households in eastern Uganda. African Crop 

Science Journal, 20(Suppl. 2), 203–12. 
Nagasha JI, Ocaido M & Kaase-bwanga E, 2019. Theoretical and conceptual framework for gender 

analysis of attitudes and adaptation mechanisms to climate change for sustainable livelihoods in 

Uganda. Journal of African Studies and Development 11(4): 51–8. 

https://doi.org/10.5897/JASD2019.0532 

Nastis SA, Michailidis A & Chatzitheodoridis F, 2012. Climate change and agricultural productivity. 

African Journal of Agricultural Research 7(35): 4885–93. 

National Oceanic and Atmospheric Administration (NOAA), 2019. U.S. billion-dollar weather & 

climate disasters 1979-2013. https://www.ncdc.noaa.gov/billions 

National Planning Authority (NPA), 2015. Uganda Vision 2040. Kampala, Uganda: National 

Planning Authority (NPA). http://www.npa.go.ug/uganda-vision-2040/ 

Nkegbe PK & Kuunibe N, 2014. Climate variability and household welfare in northern Ghana. 

WIDER Working Paper 2014/027, United Nations University (UNI-WIDER), Helsinki, Finland. 

Ochieng J, Kirimi L & Mathenge M, 2016. Effects of climate variability and change on agricultural 

production: The case of small scale farmers in Kenya. NJAS: Wageningen Journal of Life Sciences 

77(1): 71–8. https://doi.org/10.1016/j.njas.2016.03.005 

Reed B, Mendelsohn R & Abidoye BO, 2017. The economics of crop adaptation to climate change 

in South-East Asia. Climate Change Economics 8(3): 1740002. 

https://doi.org/10.1142/s2010007817400024 

Rötter RP, Hoffmann MP, Koch M & Müller C, 2018. Progress in modelling agricultural impacts of 

and adaptations to climate change. Current Opinion in Plant Biology 45(B): 255–61. 

https://doi.org/10.1016/j.pbi.2018.05.009 

Şeker M & Saliola F, 2018. A cross-country analysis of total factor productivity using micro-level 

data. Central Bank Review 18(1): 13–27. 

Seo SN & Mendelsohn R, 2008. Measuring impacts and adaptations to climate change: A structural 

Ricardian model of African livestock management. Agricultural Economics 38(2): 151–65. 

Sheng Y & Xu X, 2019. The productivity impact of climate change: Evidence from Australia’s 

millennium drought. Economic Modelling, 76: 182–91. 

https://doi.org/10.1016/j.econmod.2018.07.031 

Shikuku KM, Winowiecki L, Twyman J, Eitzinger A, Perez JG, Mwongera C & Läderach P, 2017. 

Smallholder farmers’ attitudes and determinants of adaptation to climate risks in East Africa. 

Climate Risk Management 16: 234–45. https://doi.org/10.1016/j.crm.2017.03.001 

Silvestri S, Bryan E, Ringler C, Herrero M & Okoba B, 2012. Climate change perception and 

adaptation of agro-pastoral communities in Kenya. Regional Environmental Change 12(4): 791–

802. https://doi.org/10.1007/s10113-012-0293-6 

Uganda Bureau of Statistics (UBoS), 2017. The 2016/17 Uganda national household survey (UNHS). 

Kampala, Uganda: Uganda Bureau of Statistics (UBoS). 

Uganda Bureau of Statistics (UBoS), 2018. 2018 statistical abstract. Kampala, Uganda: Uganda 

Bureau of Statistics (UBoS). Available at https://www.ubos.org/wp-

content/uploads/publications/05_2019STATISTICAL_ABSTRACT_2018.pdf 

Uganda Bureau of Statistics (UBoS), 2019. 2019 statistical abstract. Kampala, Uganda: Uganda 

Bureau of Statistics (UBoS). Available at https://www.ubos.org/wp-

content/uploads/publications/01_20202019_Statistical_Abstract_-Final.pdf 

Uganda National Meteorological Authority (UNMA), 2019. Status of Uganda’s climate report – 

2019. Kampala, Uganda: UNMA. 

callto:(35),%204885-4893
https://www.ncdc.noaa.gov/billions/


AfJARE Vol 18 No 1 (2023) pp 14–38  Babyenda et al. 

 

 

35 

Urgessa T, 2015. The determinants of agricultural productivity and rural household income in 

Ethiopia. Ethiopian Journal of Economics 24(2): 63–91. 

https://www.ajol.info/index.php/eje/article/viewFile/146625/136151 

Van Asten PJA, Fermont AM & Taulya G, 2011. Drought is a major yield loss factor for rainfed East 

African highland banana. Agricultural Water Management 98(4): 541–52. 
Van Oort PAJ & Zwart SJ, 2018. Impacts of climate change on rice production in Africa and causes 

of simulated yield changes. Global Change Biology 24(3): 1029–45. 

https://doi.org/10.1111/gcb.13967 

Van Passel S, Massetti E & Mendelsohn R, 2017. A Ricardian analysis of the impact of climate 

change on European agriculture. Environmental and Resource Economics 67: 725–60. 

https://doi.org/10.1007/s10640-016-0001-y 

Van Vuren DP, Ochola WO, Riha S, Gampietro M & Ginze H, 2009. Outlook on agricultural change 

and its drivers. In McIntyre BD, Herren HR, Wakhungu J & Watson RT (eds), Agriculture at a 

crossroads. International Assessment of Agricultural Knowledge, Science and Technology for 

Development (IAASTD): Global report. Synthesis Report. Washington DC: Island Press. 

Wang J, Mendelsohn R, Dinar A, Huang J, Rozelle S & Zhang L, 2009. The impact of climate change 

on China’s agriculture. Agricultural Economics 40(3): 323–37. https://doi.org/10.1111/j.1574-

0862.2009.00379.x 

World Bank, 2019. World Bank development indicators report on Uganda. Washington DC: World 

Bank. 

Zhang P, Zhang J & Chen M, 2017. Economic impacts of climate change on agriculture: The 

importance of additional climatic variables other than temperature and precipitation. Journal of 

Environmental Economics and Management 83: 8–31. https://doi.org/10.1016/j.jeem.2016.12.001 

 

  



AfJARE Vol 18 No 1 (2023) pp 14–38  Babyenda et al. 

 

 

36 

Appendices 

 

Appendix 1: Maps showing trends in climate variability across various regions of Uganda 

 

 
Figure A1: Precipitation variability from 1979 to 2013 

Source: National Oceanic and Atmospheric Administration ([NOAA] 2019) reanalysis data  

 

 
Figure A2: Minimum temperature variability from 1979 to 2013 

Source: National Oceanic and Atmospheric Administration ([NOAA] 2019) reanalysis data 
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Figure A3: Maximum temperature variability in Uganda from 1979 to 2013 
Source: National Oceanic and Atmospheric Administration ([NOAA] 2019) reanalysis data 
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Appendix 2: Results of correlation matrix  
 TFP ppt_va~y PPTVar~d mintem~y MinVar~d maxtem~y MaxVar~d hhage 

TFP 1         

ppt_variab~y -0.027 1        

PPTVariab_~d -0.0252 0.9887 1       

mintemp_va~y 0.0158 0.0605 0.0362 1      

MinVariab_~d 0.013 0.0311 0.012 0.9682 1     

maxtemp_va~y -0.0018 -0.0266 -0.0362 0.0649 0.0897 1    

MaxVariab_~d -0.0006 -0.0268 -0.0356 0.0706 0.1084 0.989 1   

hhage -0.0226 0.0237 0.0217 -0.0141 -0.0136 0.0043 0.0057 1 

hhagsqd -0.0277 0.0191 0.0173 -0.0151 -0.0144 0.0051 0.0067 0.9858 

hhsex 0.0665 -0.0247 -0.0229 0.0126 0.015 0.0112 0.012 -0.1721 

urban -0.0821 0.0526 0.0507 0.0151 0.0122 0.0131 0.0113 0.0259 

Marital_st~s 0.0769 -0.0322 -0.0308 0.0073 0.0057 0.0123 0.0126 -0.2696 

hhedyrs 0.0776 0.0041 0.0052 0.0143 0.0176 0.0069 0.006 -0.2261 

Extension_~s 0.0577 -0.0496 -0.0477 0.0131 0.0111 -0.0108 -0.0085 -0.0027 

mkt_access 0.0017 0.0056 0.0047 -0.0215 -0.0227 -0.0147 -0.0149 0.0051 

PPT_Ext 0.0541 0.1476 0.1471 0.0308 0.0226 -0.0175 -0.0158 -0.0008 
 hhagsqd hhsex urban Marita~s hhedyrs Extens~s mkt_ac~s PPT_Ext 

hhagsqd 1         

hhsex -0.1581 1        

urban 0.0137 -0.112 1       

Marital_st~s -0.2622 0.6853 -0.134 1      

hhedyrs -0.2341 0.3331 0.144 0.2586 1     

Extension_~s -0.0031 -0.0081 -0.0124 0.0076 -0.0109 1    

mkt_access 0.003 0.001 0.0228 0.0091 0.0002 -0.0067 1   

PPT_Ext 0.0018 0.0078 0.007 0.0064 -0.0109 0.9531 -0.006 1 

Source: Author’s calculations based on UNPS datasets (2009 to 2019) and world climate data 

 


