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Abstract 

 

Soybean is one of the key legume crops that provides several financial benefits for farming households 

in Malawi. However, Malawi's persisting efforts to improve smallholder productivity and 

diversification have only translated into moderate improvements in food security outcomes. Hence, 

the study aims to assess whether adopting improved soybean varieties and their complementary 

agronomic practices enhances food security among smallholder farmers in Malawi. Furthermore, 

using 1 500 sampled households, the study employed the endogenous switching regression to assess 

farmers' adoption decisions, and a Cox hazard proportion model to determine the survival and hazard 

ratio of dis-adoption. In addition, the study identified food consumption score, household dietary 

diversity score and household food insecurity access score as outcome variables for food security 

measures. The study's findings indicate that adopting improved soybean varieties and agronomic 

practices decreases the household food insecurity access scale and increases the food consumption 
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score and household dietary diversity score. In addition, from the result of the Cox hazard proportion 

model it can be seen that farmers are less likely to dis-adopt soybean varieties if they own a bicycle, 

live in a home with an iron roof, or are from the Lilongwe, Ntchisi or Dedza districts. Finally, the 

study recommends enhancing access to soybean varieties by improving distribution systems and 

providing transportation solutions for farmers, and suggests conducting a similar study using panel 

data to more accurately capture the true impact of adoption of improved varieties on food security. 

 

Key words: soybean varieties, household food security, endogenous switching regression, food 

consumption scores, agronomic practices, FCS, HFIAS, HDDS  

 

1. Introduction 

 

Food security is a multidimensional phenomenon where households produce food sustainably, have 

the economic means to access it, and utilise it to meet their nutritional needs (Sileshi et al. 2023). In 

2019, 250.3 million people in Africa lacked adequate food, with 94% of these in Sub-Saharan Africa 

(SSA) (Salima et al. 2023). Even worse, one in five people in Africa experienced food insecurity in 

2021 (FAO 2022). Hence, food insecurity remains a significant issue in the region. Efforts in Sub-

Saharan Africa to achieve Sustainable Development Goals 2.1 and 2.2 – ending hunger, food 

insecurity, and all forms of malnutrition – are moving in the wrong direction, with projections 

showing nearly 670 million people facing hunger by 2030 (FAO 2022). The region lags in reducing 

hunger due to rapid population growth and rural areas’ vulnerability to climate change (Barrios et al. 

2008; Kotir 2011). 

 

Malawi is one of the Sub-Saharan countries struggling with food security (Salima et al. 2023). 

Between 2019 and 2020, approximately 63.5% of families were food insecure, a significant increase 

from the 38.5% reported a decade earlier (National Statistical Office [NSO] 2020). This is due to a 

rapidly growing population that is overly dependent on agriculture and lacking coping strategies for 

recurring and extreme climate shocks, like floods and droughts (Gholami et al. 2022). Hence, minor 

shocks significantly affect Malawian livelihoods, causing inefficiency and losses among smallholder 

farmers (Gono & Takane 2018). This suggests that poverty and vulnerability are closely associated 

with food insecurity, especially in agricultural families living in rural areas where income and crop 

yield are converging (Devereux 2016). 

 

To address food security, the Government of Malawi introduced the Farm Input Subsidy Programme 

(FISP) in the 2005/2006 growing season to help small-scale farmers who lack resources to buy inputs 

(Sibande et al. 2017), However, not all farmers have access to these subsidised inputs. According to 

De Weerdt and Duchoslav (2022), beneficiaries are often from rural middle- and higher-income 

households, not poor productive farmers. Worse still, ultra-poor farmers usually sell their vouchers 

to meet immediate basic needs (Duchoslav et al. 2023). 

 

In response, the government and research institutions have intensified crop diversification efforts, 

particularly advocating for soybeans. Soybean is a key legume crop providing several financial 

benefits to farming households in Malawi. It improves soil fertility when grown in rotation with 

maize, reducing the need for mineral nitrogen fertiliser and lowering production costs (Van Vugt et 

al. 2018). In addition, soybeans have better grain storage quality compared to cereals, and are more 

resistant to pests and diseases, making cultivation less costly (Giller et al. 2011). 

 

Alternatively, several agronomic management practices, such as using certified seeds, box ridges, 

fertilisers, inoculants, double row spacing, optimising plant population and adhering to effective 

planting dates have been widely introduced and promoted in Malawi due to their economic and 
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agronomic benefits. According to Van Vugt et al. (2017), combining these practices with enhanced 

soybean varieties allows farming households to maximise their production. 

 

Nonetheless, Malawi’s smallholder farmer fields currently produce only about 1 t/ha of soybeans, 

significantly less than the continent’s and the world’s average yields (Tufa et al. 2021). According to 

Van Vugt et al. (2017), minimal utilisation of modern technology and ineffective production methods 

with low-quality seeds have contributed to poor soybean productivity in Malawi.  

 

However, despite an increase in the popularity of soybeans and their complementary agronomic 

practices, there is inconclusive information on their effectiveness in enhancing household food 

security. There is a gap in information on factors that influence a farmer’s decision to adopt better 

soybean varieties and agronomic practices, whether improved soybean varieties and agronomic 

practices enhance food security, and the survival estimates and dis-adoption hazard ratios of these 

soybean varieties.  

 

A household’s decision to adopt improved soybean varieties and agronomic practices can be 

influenced significantly by food security factors such as availability, utilisation and food accessibility. 

By adopting these improved varieties, households can maximise their output and profits, thereby 

increasing their disposable income to purchase food during shortages. This decision ensures not only 

the availability of food through increased production, but also food accessibility through the income 

generated from soybean sales. In addition, improved soybean varieties provide numerous nutritional 

benefits, enhancing food utilisation within the household. Furthermore, adopting these varieties yields 

positive livelihood outcomes, ensuring household food security through better output, income 

generation and nutritional benefits. 

 

Tikolore, Makwacha, Nasoko and Serenade are the soybean varieties that smallholder farmers 

cultivate on a large scale. This paper demonstrates that, during the 2016/2017 cropping season, one 

of the four improved soybean varieties was planted by 56% of the soybean producers in the six main 

soybean-growing districts, including Lilongwe, Mchinji, Dedza, Ntchisi, Kasungu and Mzimba. 

During the 2016/2017 cropping season, 188 407 ha of land was planted to soybeans, with more than 

100 000 ha allocated to the four varieties. These four cultivars yield well and have qualities that 

processors find desirable. Other characteristics of the varieties include high yield under moisture 

stress, short maturity, and excessive moisture. 

 

This paper acknowledges that using the propensity score matching (PSM) method might yield biased 

estimates due to model misspecification, as PSM only accounts for observable characteristics. In 

contrast, this paper uses endogenous switching regression, which considers both observable 

characteristics, such as access to extension services and membership in an organisation, and 

unobserved characteristics, like farmers’ skills, innovativeness and utility. These influence the choice 

to adopt improved soybean varieties and agronomic practices. 

 

Traditionally, adoption studies focus on seasonal adoption decisions, regardless of the dataset used. 

Critics, including Dillon et al. (2020) and Mgomezulu et al. (2023), argue that evaluations should be 

conducted at least two years after introducing agricultural technology, as the benefits of adoption may 

not be apparent within a single season. Thus, this study defines adoption as a farmer’s awareness of 

the varieties and their complementary agronomic practices, along with continuous use of the variety 

over the preceding three years with double-row spacing as an agronomic practice (Mgomezulu et al. 

2023). 
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Furthermore, measuring food security is complex, and no single indicator can capture all aspects, 

such as sustainability, accessibility, availability and utilisation (Magrini & Vigani 2016). Therefore, 

in contrast to other studies that use only one food security indicator (Sileshi et al. 2023), this study 

employs the food consumption score (FCS), household food insecurity access scale (HFIAS), and 

household dietary diversity score (HDDS) to assess food accessibility and nutrition aspects. 

 

This paper is organised into the following sections: the first section introduces soybean 

complementary agronomic and food security in Malawi; the second section describes the theoretical 

model and empirical procedure; the third section presents the survey design and data collection, along 

with descriptive statistics; and the final section summarises the study’s findings and provides policy 

recommendations. 

 

2. Theoretical framework 

 

2.1 Utility maximisation theory 

 

Utility is a means to describe individuals’ preferences (Varian 2010). It is common to imagine people 

making decisions to maximise their utility or to maximise their level of happiness. Hence, a 

household’s decision to adopt improved soybean technologies can be modelled using the utility 

maximisation theory, as evidenced by Tufa et al. (2021) and Mgomezulu et al. (2023). 

 

Utility can be derived through one’s decision to adopt improved soybean varieties and their 

complementary agronomic practices, which might maximise production and enhance household food 

security. Furthermore, households might want to maximise their disposable incomes to buy household 

assets and food, or anything they want from the market in times of need. Farmers’ decisions to adopt 

improved soybean technologies might be influenced by aspects such as production factors, whereby 

households want to consume their own produced food; market factors, whereby households want to 

increase their income for purchasing goods and services at the market; and household and institutional 

factors. Farmers may adopt improved soybean varieties and the associated agronomic practices if the 

utility obtained exceeds other alternative sources available. Equation (1) represents the utility 

maximisation theory: 

 

𝐺∗
𝑖 =  𝐵𝑖𝐴 − 𝐵𝑖𝑁 > 0,           (1) 

 

where (𝐺∗
𝑖) is a latent variable that shows the difference between adoption benefits (𝐵𝑖𝐴) and the non-

adoption (𝐵𝑖𝑁) of improved soybean varieties. Further, 𝐺∗ can be presented as a function of 

observable characteristics, as defined below: 

 

𝐺∗
𝑖 =  𝛽𝑋𝑖 + 𝜀𝑖, with 𝐺∗

𝑖 = { 1 𝑖𝑓 Ġ𝑖 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
,        (2) 

 

where 𝛽 is a vector parameter to be estimated, 𝑋𝑖 is a vector of explanatory variables, and 𝜀𝑖 is the 

error term. Further, this paper defines an adopter as any soybean grower who is aware of and plants 

any improved soybean variety with double row spacing as an agronomic practice. 

 

2.2 Empirical framework 

 

The study uses observational data without randomisation into adoption or non-adoption groups. Thus, 

soybean growers with comparative advantages in terms of observed characteristics (e.g., distance to 

the market) and unobserved characteristics (e.g., household utility preferences) may adopt improved 
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varieties, resulting in higher HDDS, FCS and lower HFIAS. This indicates potential self-selection 

bias, possibly causing parameter (β) estimations to underestimate the true effects of adoption. 

Consequently, this bias may affect the real impact of improved varieties and practices. The research 

also notes that adoption decisions are influenced significantly by extension workers and lead farmers 

(Mgomezulu et al. 2023). Farmers may self-select based on household preferences, and unobservable 

factors such as relationships with extension workers, farming skills and personal motivation could 

further bias estimates. This suggests the need for an endogenous switching regression (ESR) model 

to account for both observable and unobservable variations (Wooldridge 2015). 

 

2.2.1 The selectivity-corrected endogenous switching regression model 

 

When individuals are not assigned randomly, as in this study, the ESRM uses the full information 

maximum likelihood estimation (FIML) approach to estimate the effects of treatments. According to 

Lokshin and Sajaia (2004), a two-stage least squares (2SLS) method can be applied in two steps to 

evaluate the impact of implementing improved soybean varieties. The first step involves applying a 

probit regression model to ascertain the likelihood of adoption. The second stage looks at the 

relationships between the observable traits of soybean growers and the outcome variables. The two 

separate regimes are given as follows: 

 

𝑌𝑖𝐴
∗ = 𝛽𝑖𝐴𝑋𝑖𝐴 + 𝑣𝑖𝐴 if  𝐺𝑖 = 1 for adopters in regime 1       (3) 

 

𝑌𝑖𝑁
∗ = 𝛽𝑖𝑁𝑋𝑖𝑁 + 𝑣𝑖𝑁 if 𝐺𝑖 = 0 for non- adopters in regime 2      (4) 

 

The latent variable, 𝑌𝑖𝐴
∗ , represents the likelihood that a farming household will adopt an improved 

soybean variety and an agronomic practice over the course of three years. The vectors 𝑋𝑖𝐴 and 𝑋𝑖𝑁 

represent production socioeconomic and institutional regressors for adopters and non-adopters, 𝛽𝑖𝐴 

and 𝛽𝑖𝑁 represents a vector of parameters that need to be estimated for both adopters and non-

adopters, and 𝑣𝑖𝐴 and 𝑣𝑖𝑁 represents the stochastic error term.  

 

Due to selection bias and endogeneity, the study assumes non-zero values of correlation between 𝑣𝑖𝑁 

and 𝑣𝑖𝐴. Furthermore, the study assumes that the three errors, thus 𝜀𝑖, 𝑣𝑖𝑁 and 𝑣𝑖𝐴, have a trivariate 

normal distribution with zero mean, and a variance covariance structure presented as follows:  

 

Covariance (𝜀𝑖, 𝑣𝑖𝑁, 𝑣𝑖𝐴) = {

𝜎ɛ
2 𝜎𝐴ɛ 𝜎𝑁ɛ

𝜎𝐴ɛ 𝜎𝐴
2 𝜎𝑁𝐴

𝜎𝑁ɛ 𝜎𝑁𝐴 𝜎𝑁
2

},       (5) 

 

where 𝜎ɛ
2, 𝜎𝐴

2 and 𝜎𝑁
2 are variances of the error terms in the selection equation and outcome models 

for adopters and non-adopters. Furthermore, 𝜎𝐴ɛ is the covariance between 𝜀𝑖 and 𝑣𝑖𝐴, and 𝜎𝑁ɛ is the 

covariance between 𝜀𝑖 and 𝑣𝑖𝑁. Since 𝑌𝐴
∗ and 𝑌𝑁

∗ do not occur at the same time, the covariance between 

𝑣𝑖𝑁 and 𝑣𝑖𝐴 is undefined. This results in the mean values of the truncated error terms being presented 

as: 

 

𝐸[𝑣𝐴| 𝐺 = 1] =  𝜎𝐴ɛ  = 𝜎𝐴𝜀𝛾𝐴          (6) 

 

and  

 

𝐸[𝑣𝑁| 𝐺 = 0] =  𝜎𝑁ɛ = 𝜎𝐴𝜀𝛾𝑁          (7) 
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In the first stage, 𝛾𝐴 and 𝛾𝑁 can be estimated and included in the outcome equations for adopters and 

non-adopters if an exogenous instrument relevant to the situation is provided. For the proper design 

of the ESR model, the selection model must have at least one variable that influences the decision to 

adopt improved soybean technologies, but that does not affect the outcome variable (FCS, HDDS and 

HFIAS). 

 

2.2.2 The impact of adoption of improved soybean varieties and agronomic practices on food 

security 

 

The impact of adopting improved soybean technologies can be modelled by estimating the FCS, 

HDDS and HFIAS under observed and counterfactual scenarios. In the observed scenario, the 

expected value of the outcome variables (FCS, HDDS and HFIAS) for adopters (𝑌𝑖𝐴
∗ ) can be expressed 

as:  

 

𝐸[𝑌𝐴
∗| 𝐺 = 1] =  𝛽𝑋𝐴 − 𝜎𝐴𝜀𝛾𝐴         (8) 

 

Soybean growers who adopted improved varieties may behave differently from average soybean 

growers with the same characteristics due to unobserved characteristics. Hence, 𝜎𝐴𝜀𝛾𝐴, in the equation 

above, considers selection bias.  

 

The expected outcome (FCS, HDDS and HFIAS) for adopters had they decided not to adopt is 

modelled as follows: 

 

𝐸[𝑌𝑁
∗| 𝐺 = 1] =  𝛽𝑋𝑁 − 𝜎𝑁𝜀𝛾𝐴          (9) 

 

Therefore, the impact of adoption on food security is the difference between the two equations above; 

thus, the average treatment effect on the treated (ATT) is presented as follows: 

 

𝐴𝑇𝑇 = 𝐸[𝑌𝐴
∗| 𝐺 = 1] − 𝐸[𝑌𝑁

∗| 𝐺 = 1] =  𝑋(𝛽𝐴 − 𝛽𝑁) + (𝜎𝐴𝜀 − 𝜎𝑁𝜀)𝛾𝐴
              (10) 

 

2.2.3 Description of outcome variables and their covariates  

 

According to McGuire (2015), the study adopts the household dietary diversity score (HDDS) as a 

measure of food security, which is presented as: 

 

𝐻𝐷𝐷𝑆 =  ∑ 𝑘𝑖𝑖  𝑖 = 1,2, 3 … ,0,                   (11) 

 

where 𝑘𝑖 represents the food group consumed; it equals 1 when a household consumed a particular 

food group, and zero otherwise. A household with an HDDS of 10 would have consumed every food 

group during the previous survey week, offering a useful indicator of food access by recording the 

quality, and not just the quantity, of food (FAO 2016). The considered food groups are fish and meat, 

pulses, eggs, fats and oils, cereals and grains, fruits and vegetables, dairy, roots and tubers, sugars, 

and condiments. 

 

The food consumption score (FCS), another outcome variable used to measure food security, is the 

product of the assigned weight and consumption frequency of a food group. According to the FAO 

(2016), the FCS provides a composite score considering food consumption frequency, dietary 

diversity, and nutritional value, unlike the HDDS. Food group weights are cereals and grains (4), 

pulses (3), vegetables (1), fruits (1), meat/fish (4), milk/dairy products (4), sugars (0.5), fats and oils 
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(0.5), and condiments (0). The HDDS recall period is 24 hours, while the FCS recall period is seven 

days (Maxwell et al. 2014). A higher FCS indicates more food security. 

 

The household food insecurity access scale (HFIAS), developed by FANTA, determines household 

food insecurity over the previous 30 days. A higher HFIAS score reveals poorer access to food and 

higher household food insecurity. The HFIAS has nine questions identifying food-insecure or secure 

households (FAO 2016). Responses are limited to three options based on how often food access was 

a concern: seldom (once or twice), sometimes (three to 10 times), and often (more than 10 times). A 

household scores up to 27 if it answers ‘often’ to all nine questions, and 0 if it did not encounter any 

of those circumstances, with a higher score indicating food insecurity (Maxwell et al. 2014). 

 

In Malawi, the adoption of improved agricultural technologies is influenced by socioeconomic and 

institutional factors, such as the age, education and gender of the household head, household size, and 

ownership of assets like bicycles and radios. In addition, access to extension services and membership 

in farmer organisations also play a role (Feder et al. 1985). 

 

Older household heads may adopt innovations due to experience and resources, while younger ones 

are more adaptable (Kassie et al. 2013; Ayinde et al. 2017; Mgomezulu et al. 2018; Pangapanga-

Phiri & Mungatana 2021; Tufa et al. 2022). Furthermore, educated household heads are better at 

managing resources and understanding the benefits of using advanced agricultural methods, making 

them more likely to implement improved technologies (Mgomezulu et al. 2018; Vaiknoras et al. 

2019; Pangapanga-Phiri & Mungatana 2021). Men generally adopt new technologies more than 

women due to better access to inputs, although female-headed households also show strong potential 

(Peterman et al. 2014; Low & Thiele 2019; Mapanje et al. 2021). 

 

Larger households furthermore provide more labour, increasing the likelihood of adoption (Ayinde 

et al. 2017; Low & Thiele 2019; Mapanje et al. 2021). Wealth indicators, such as land and livestock 

ownership, correlate with higher adoption rates (Kassie et al. 2013; Musa et al. 2015; Ojha & Khanal 

2021). Membership of farmer organisations and access to extension services facilitate learning and 

technology dissemination (Vaiknoras et al. 2019; Mapanje et al. 2021; Pangapanga-Phiri & 

Mungatana 2021). Bicycle ownership reduces transportation costs, further increasing the likelihood 

of adopting improved soybean technologies. 

 

2.2.4 The Cox proportional hazard model  

 

Using a Cox proportional hazard model, the study calculated adoption hazard rates. This is because 

farmers are unable to fully reap the benefits of soybean technologies due to inconsistent and 

ineffective adoption. According to the study, survival analysis offers the best-fit check, since it can 

account for both the hazard rates and the adoption time. Following Lancaster (1992), let 𝑇 represent 

the duration of adoption for each farmer, where the observed durations are the periods over which 

each farmer actively uses the soybean varieties. Here, 𝑇 is a nonnegative random variable quantifying 

these adoption durations. The cumulative density function, F(t), can thus be expressed as follows, 

and the probability density function of t can be expressed as 𝑓(𝑡): 

 

𝐹(𝑡) = ∫ 𝑓(𝑠)𝑑𝑠
𝑡

0
,                     (12) 

 

where f(s) is the adoption duration, and S(t) is the survival function, given as follows: 

 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡)                   (13) 
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The likelihood (P) that the adoption of soybean technologies will occur in an infinite timeframe (∆t) 
following the adoption survival function, after the decision to not adopt the technologies has lasted 

for time t, can be determined as follows: 

 

𝑃 (𝑡 ≤ 𝑇 < 𝑡 +  ∆𝑡|𝑇 > 𝑡)                     (14) 

 

The hazard function (ℎ(𝑡)) below shows the likelihood that a farmer adopts the soybean technologies 

at time t, such that T = t, provided that the farmer did not adopt the technologies before t: 

 

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡≤𝑇<𝑡+ ∆𝑡|𝑇>𝑡)

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
                    (15) 

 

Moreover, the allocation of the adoption period is influenced by several independent variables, 

including production, market and socioeconomic factors: 

 

ℎ(𝑡, 𝑥, 𝜃, 𝛽) = lim
∆𝑡→0

𝑃(𝑡≤𝑇<𝑡+ ∆𝑡|𝑇>𝑡)

∆𝑡
,                   (16) 

 

where 𝛽 is a vector of parameters that need to be estimated, 𝜃 is a vector of parameters that determine 

the probability distribution of the hazard rates, and 𝑥 is a vector of socioeconomic, production and 

market factors. Every smallholder agricultural adoption period is projected to have its distinctive 

hazard function, based on the semi-parametric model in Equation (17): 

 

ℎ𝑖(𝑡) = ℎ(𝑡; 𝑥𝑖) = ℎ0(𝑡) exp(𝑥𝑖𝛽) = ℎ0(𝑡) exp(𝛽1𝑥𝑖1+ . . . + 𝛽𝑘𝑥𝑖𝑘)             (17) 

 

Therefore, the function becomes 

 

log ℎ𝑖(𝑡) = 𝛼(𝑡) + 𝛽1𝑥𝑖1 + … + 𝛽𝑘𝑥𝑖𝑘,                 (18) 

 

in which the proportionate influence of each of the uncorrelated variables on the likelihood of 

adoption are expressed by β and 𝛼(𝑡) = log ℎ0 (𝑡). 

 

3. Sampling procedure and data 

 

The International Institute for Tropical Agriculture (IITA) provided secondary data for this study, 

which was used to select sample households using a stratified random sampling technique. Extension 

planning areas (EPAs) within the districts of Lilongwe, Mchinji, Dedza, Ntchisi, Kasungu and 

Mzimba, which produce over 80% of Malawi’s soybeans, were chosen carefully. Twenty EPAs were 

selected using probability proportional to size (PPS) sampling, based on the area planted to soybeans 

during the 2016/2017 season. Within these EPAs, sections, villages and households were randomly 

selected, resulting in 320 villages from 80 sections, and 1 600 households from 320 villages. Of these, 

1 500 households were soybean growers during the 2016/2017 season. The data includes household 

head demographics (age, sex, education), household size, assets, and institutional characteristics (e.g., 

farmer organisation membership, distance to local markets, and information sources). Skilled 

enumerators collected the data using Surveybe software, a computer-assisted personal interviewing 

tool. 
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4. Results and discussion  

 

4.1. Descriptive statistics 

 

Table 1 presents the summary statistics of the surveyed farmers. From the results it is clear that 77% 

of the surveyed households were male-headed, with an average age of 44.37 years. These household 

heads had an average of 7.8 years of schooling, and the average household size was 5.14 members. 

Notably, farming households cultivated an average of 1.21 hectares of cropland, with 0.21 hectares 

dedicated to soybean production, representing 17% of the total cropped area. Soybean farmers yielded 

around 212.41 kilograms per hectare, utilising 162.48 person-days of labour per hectare. In terms of 

food security, households reported average scores of 6.24 for the household food insecurity access 

scale (HFIAS), 11.21 for the food consumption score (FCS), and 6.81 for the household dietary 

diversity score (HDDS). Adopters of improved soybean varieties and agronomic practices 

represented 8% of the surveyed households. They achieved significantly higher soybean yields, of 

80.37 kilograms per hectare, and a total crop production value of 6 499 kwacha per hectare more than 

non-adopters. Adopters also allocated an additional 0.06 hectares of land to soybean production and 

had 8% greater access to extension services compared to non-adopters. Furthermore, among adopters 

of improved soybean varieties and practices, 62% owned bicycles, facilitating market access and 

input procurement, while 45% had radios, providing farming information. Lead farmers made up 6% 

of adopters, likely promoting adoption in their communities. In addition, about 69% of the sampled 

households had access to agricultural extension services, 49% farmed on medium slopes and 88% 

had access to formal markets. 

 

Table 1: Descriptive statistics of the surveyed farmers 
Variable Variable description  Full sample 

N = 1 510 

Adopters 

(A) 

n = 124 

Non-

adopters (N) 

n = 1386 

Difference 

(A-N) 

Soybean yield Kilograms per hectare (kg/ha) 212.41 

(8.38) 

286.20 

(30.93) 

205.81 

(8.68) 

-80.37*** 

(30.47) 

Productivity Total value of crop production 

(MWK/ha) 

18 453.49 

(819.08) 

24 418.78 

(3 402.61) 

17 919.41 

(837.74) 

-6 499.37** 

(2 978.78) 

HFIAS Household food insecurity 

access score  

6.24 

(0.14) 

5.15 

(0.40) 

6.33 

(0.15) 

1.18** 

(0.54) 

FCS Food consumption score 11.21 

(0.10) 

12.02 

(0.36) 

11.14 

(0.11) 

-0.87** 

(0.39) 

HDDS Household dietary diversity 

score 

6.81 

(0.05) 

7.25 

(0.16) 

6.77 

(0.05) 

-0.48*** 

(0.18) 

Extension  Extension contacts (1 = yes)  0.69 0.76 0.68 0.08* 

Gender Gender of household head 0.77 0.78 0.77 0.01 

Age Age of household head  44.37 

(0.39) 

44.16 

(1.31) 

44.38 

(0.41) 

0.21 

(1.44) 

Education Education status of household 

head (years of schooling) 

7.80 

(0.11) 

7.42 

(0.35) 

7.83 

(0.12) 

0.40 

(0.42) 

Household size Number of persons per 

household 

5.14 

(0.05) 

5.09 

(0.16) 

5.14 

(0.05) 

0.04 

(0.18) 

Soybean area  Area under soybean production 

(ha) 

0.21 

(0.01) 

0.27 

(0.02) 

0.21 

(0.01) 

-0.06*** 

(0.02) 

Area  Total area under cultivation (ha) 1.21 

(0.04) 

1.27 

(0.07) 

1.20 

(0.04) 

-0.07 

(0.14) 

Labour  Total quantity of labour (man-

days per hectare) 

162.48 

(4.26) 

178.26 

(13.05) 

161.06 

(4.49) 

-17.19 

(15.52) 

 Notes: * = significant at 10% (0.1), ** = significant at 5% (0.05), *** = significant at 1% (0.01); standard errors in 

parentheses 
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4.2 Determinants of adoption of improved soybeans and agronomic practices  

 

Table 2 displays the endogenous switching regression (ESRM) results, including estimates for factors 

influencing the adoption of improved soybean varieties and agronomic practices, along with the 

outcome variables FCS, HDDS and HFIAS, for both adopters and non-adopters. All three models are 

significant at 1%. The paired independence test shows differences in the FCS, HFIAS and HDDS 

functions between adopters and non-adopters, highlighting variations in coefficient estimates for 

factors such as ownership of iron-roofed houses, radios, bicycles, and district location. This indicates 

that ESRM is superior to a simple treatment effect model. The results of the selection model show 

that farmers from the Ntchisi district who own a bicycle and have high adoption intensity are more 

likely to adopt improved soybean varieties and agronomic practices. Specifically, a farmer from 

Ntchisi has a 41.74% higher probability of adoption compared to one from Mzimba, likely due to 

fewer extension workers and market access in Mzimba. Bicycle owners have a 30.61% higher 

likelihood of adoption, as bicycles facilitate access to markets for improved seeds. The FCS and 

HFIAS outcome models reveal that household size, fertile land ownership, radio ownership, and iron-

roofed houses affect food insecurity scores for both adopters and non-adopters. For example, a 

percentage increase in land raises the FCS by 0.69 for non-adopters and 2.07 for adopters. Household 

size increases HFIAS by 0.46 for non-adopters and 0.67 for adopters, while fertile land reduces 

HFIAS by 1.27 for non-adopters and 1.87 for adopters. Homes with iron roofs lower HFIAS by 2.39 

for non-adopters and 2.90 for adopters. 

 

4.3 Endogeneity test and weak instrument test 

 

Based on theoretical foundations and prior research (Amadu et al. 2020), this study selected adoption 

intensity, defined as the number of improved soybean varieties a farmer has adopted, as an 

instrumental variable to address potential endogeneity. Adoption intensity is strongly correlated with 

the likelihood of adopting improved soybean varieties and their associated agronomic practices, as it 

reflects a farmer’s commitment and resources devoted to adoption. Importantly, adoption intensity 

does not have a direct effect on food security outcome variables – such as the food consumption score 

(FCS), household food insecurity access scale (HFIAS), and household dietary diversity score 

(HDDS) – other than through its influence on the adoption decision itself. To ensure the validity of 

this instrument, we conducted both endogeneity and weak instrument tests. Following econometric 

principles (Wooldridge 2015), we tested the null hypothesis of exogeneity for the soybean and 

agronomic adoption variables and assessed the strength of the instrument using the zero-first-stage 

test (Wooldridge 2015; Mgomezulu et al. 2023). As shown in Table 3, the null hypothesis of 

exogeneity was rejected at the 1% level of significance, indicating the presence of endogeneity. 

Moreover, the weak instrument test was also rejected, confirming that adoption intensity is a strong 

instrument. 
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Table 2: Results from endogenous switching regression 
Variables FCS HDDS HFIAS 

Adopter Non-adopter Selection model  Non-adopter Adopter Selection model  Selection model Adopter Non-adopter 

Age -0.0587 -0.0111 0.0235 -0.0005 0.0010 0.0166 0.0149 -0.0992 0.0641 

 (0.241) (0.044) (0.023) (0.003) (0.009) (0.019) (0.018) (0.174) (0.055) 

Age2 -0.0003 -0.0001 -0.0002 -0.0000 -0.0001 -0.0002 -0.0002 0.0017 -0.0004 

 (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.001) 

Education 0.1240 -0.0182 -0.0139 -0.0024 0.0057 -0.0118 -0.0116 0.0762 -0.0064 

 (0.138) (0.030) (0.010) (0.002) (0.005) (0.011) (0.011) (0.105) (0.035) 

Sex of household head -0.4450 0.6258* -0.1240 0.0186 -0.0166 -0.1785 -0.1849 -0.4387 -0.2404 

 (0.966) (0.372) (0.219) (0.020) (0.056) (0.130) (0.130) (0.994) (0.404) 

Household size -0.4178* -0.0774 -0.0107 -0.0111*** -0.0260** -0.0222 -0.0270 0.6370*** 0.3748*** 

 (0.215) (0.075) (0.037) (0.004) (0.012) (0.028) (0.029) (0.231) (0.087) 

Lilongwe district -0.6870 -0.8005 0.2273 -0.0297 -0.1286 0.2141 0.1909 -1.1678 1.5224** 

 (1.980) (0.736) (0.424) (0.036) (0.080) (0.251) (0.251) (2.268) (0.682) 

Mchinji district 0.5427 -1.1702** 0.1866 -0.0742** -0.0553 0.0472 0.0449 -1.5387 0.3334 

 (1.748) (0.594) (0.220) (0.034) (0.075) (0.244) (0.243) (2.305) (0.617) 

Kasungu district -1.6232 -0.8628 0.0975 -0.0437 -0.2099** 0.0502 0.0503 -1.7686 -1.0570 

 (2.150) (0.661) (0.335) (0.037) (0.098) (0.269) (0.268) (2.502) (0.671) 

Dedza district -1.2241 -1.9807*** 0.2226 -0.1079*** -0.1623** 0.0485 0.0361 -1.0010 1.0928 

 (1.760) (0.630) (0.338) (0.036) (0.067) (0.261) (0.261) (2.271) (0.678) 

Ntchisi district -1.6396 -2.0147*** 0.4081* -0.1173*** -0.1800*** 0.3245 0.3334 -0.7755 0.9373 

 (2.330) (0.701) (0.227) (0.037) (0.069) (0.254) (0.252) (2.360) (0.669) 

Very fertile land -1.1587 0.4637* 0.0177 0.0338** -0.0404 0.0247 0.0205 -1.3581* -1.0277*** 

 (0.837) (0.261) (0.135) (0.016) (0.044) (0.103) (0.104) (0.694) (0.302) 

Natural log of land (ha) 2.0913** 0.4844** -0.0830 0.0564*** 0.1029** -0.0304 -0.0387 -1.0304 -1.5949*** 

 (0.908) (0.218) (0.112) (0.013) (0.042) (0.087) (0.086) (0.767) (0.278) 

Radio -0.4914 1.0079*** 0.0431 0.0993*** 0.0077 0.1110 0.0903 -1.5898** -1.4358*** 

 (0.921) (0.373) (0.256) (0.016) (0.042) (0.111) (0.112) (0.732) (0.315) 

Iron roofing -0.1443 0.5178* 0.0606 0.0537*** 0.0514 0.0502 0.0512 -2.6307*** -2.1587*** 

 (0.896) (0.297) (0.104) (0.016) (0.045) (0.112) (0.113) (0.873) (0.321) 

Extension -0.1629 0.3531 0.0604 0.0226 -0.0023 -0.0104 -0.0129 -0.2599 0.6182* 

 (0.949) (0.288) (0.270) (0.016) (0.044) (0.119) (0.119) (0.686) (0.340) 

Organisation member 1.1493 0.8559*** -0.0939 0.0693*** 0.0799* -0.1057 -0.1092 -0.1481 -1.0861*** 

 (0.824) (0.274) (0.119) (0.016) (0.044) (0.110) (0.110) (0.686) (0.310) 

Lead farmer 1.5207 1.3458** 0.0830 0.0902*** 0.1818** 0.0646 0.0545 -0.4542 -0.7926 

 (1.897) (0.672) (0.210) (0.029) (0.074) (0.228) (0.226) (1.309) (0.657) 
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Medium slope -0.8418 0.1271 0.1978* 0.0240 -0.0303 0.2098** 0.2148** 1.1929 0.1944 

 (1.191) (0.372) (0.105) (0.016) (0.043) (0.104) (0.104) (0.874) (0.305) 

Formal market -2.2305 0.1647 0.2966** 0.0286 -0.1158* 0.3344** 0.3346** 0.7489 0.7674** 

 (1.582) (0.422) (0.140) (0.019) (0.061) (0.140) (0.140) (1.480) (0.373) 

Adoption intensity    0.2169*   0.3074*** 0.3075***   

   (0.297)   (0.052) (0.052)   

Bicycle   0.2854*   0.2421** 0.3215**   

   (0.171)   (0.121) (0.138)   

Insigma0   1.3408**   -6.1083*** 1.2473***   

   (0.566)   (0.679) (0.102)   

Insigma1    1.4729***   -4.2837*** 1.6052***   

   (0.229)   (0.774) (0.006)   

athrho0   -0.4857   -1.5639*** -0.1852   

   (1.648)   (0.300) (0.803)   

athrho1   -1.4776   -1.5284*** 0.2772**   

   (3.168)   (0.133) (0.126)   

_constant 23.0807 11.4547*** -2.6526*** 1.9849*** 2.3858*** -2.3322*** -2.2867*** 5.6732 2.8870** 

 (17.570) (1.291) (0.689) (0.074) (0.220) (0.531) (0.520) (7.425) (1.455) 

Wald chi 46.1544   316.2271   87.7684   

Prob > chi2 0.0005   0.0000   0.0000   

Observations 1 500   1 500   1 500   

Source: Authors’ analysis using an endogenous switching regression.  

Notes: The three models were run on 1 500 observations. The first column presents results with the dependent variable, food consumption score (FCS), the second column presents 

results with the household dietary diversity score (HDDS), and the third column presents results with the household food insecurity access scale (HFIAS) as dependent variables. 

Furthermore, asterisks denote significance levels: * is significant at 10% (0.1), ** is significant at 5% (0.05), and *** is significant at 1% (0.01). Standard errors are in parentheses. 

lnsigma0: This is the natural logarithm of the standard deviation of the error term in the outcome equation for non-adopters    

lnsigma1: This is the natural logarithm of the standard deviation of the error term in the outcome equation for adopters 

athrho0:  This is the hyperbolic arctangent of the correlation coefficient between the errors of the selection equation and the outcome equation for non-adopters 

athrho1:  This is the hyperbolic arctangent of the correlation coefficient between the errors of the selection equation and the outcome equation for adopters  
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Table 3: Endogeneity test and weak instrument test 
Test  F-statistic  P-value  

Endogeneity test  9.9025 0.0017 

Weak instrument test  18.107 0.0000 

 

4.4 Impact of adoption on household food security  

 

The objective of this research was to assess the impact of adopting improved soybean varieties and 

agronomic practices on household food security. The findings indicate that adopters had a food 

consumption score (FCS) that was 8.00 points higher than that of non-adopters. This suggests that 

the FCS for non-adopters could increase by 8.00 points if they were to sustainably adopt improved 

soybean varieties and related agronomic practices. Similarly, the household dietary diversity score 

(HDDS) for adopters was 3.86 points higher compared to non-adopters. Thus, if non-adopters adopted 

improved soybeans and their related agronomic practices, their HDDS could potentially increase by 

3.86 points. The study also examined food access using the household food insecurity access scale 

(HFIAS). The results show that adopters had an HFIAS score that was 3.85 points lower than that of 

non-adopters. This implies that the HFIAS score for non-adopters could decrease by 3.85 points if 

they were to adopt improved soybean varieties and their complementary agronomic practices. Table 

4 shows the treatment effects of the adoption of improved soybean and agronomic practices on FCS, 

HDDS and HFIAS. 

 

Overall, the study concludes that adopting improved soybean varieties and agronomic practices 

significantly enhances food security among farming households, as evidenced by improvements in 

both FCS and HDDS and a reduction in HFIAS. 

 

Table 4: Average treatment effect of improved soybean and agronomic practice adoption on 

FCS, HDDS and HFIAS 
Soybean 

and 

agrono-

mic 

practice 

adoption 

 

Actual 

FCS  

dependent 

on the 

adoption 

of 

improved 

soybean 

and 

agrono-

mic 

practice 

adoption 

Counter-

factual 

FCS 

indepen-

dent of 

improved 

and 

agronomic 

practice 

soybean 

adoption 

ATE 

 

Actual 

HDDS 

dependent 

on the 

adoption 

of 

improved 

soybean 

and 

agronomic 

practices 

Counter-

factual 

HDDS 

indepen-

dent of 

improved 

soybean 

and 

agronomic 

practice 

adoption 

ATE 

 

Actual 

HFAIS 

dependent 

on the 

adoption of 

improved 

soybean and 

agronomic 

practices  

Counter-

factual 

HFAIS 

indepen-

dent of 

improved 

soybean 

and 

agrono-

mic 

practice 

adoption 

ATE 

 

 (ATT)  12.02 4.01 8.00*** 7.25 3.39 3.86*** 5.15 9.00 -3.85*** 

(0.17) (0.14)  (0.08) (0.07)  (0.24) (1.26)  

Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01 

 

4.5 Cox proportional hazard model for soybean adoption 

 

We applied a Cox proportional hazard model to estimate the hazard rates associated with soybean 

adoption. The Nelson-Aalen cumulative hazard and Kaplan-Meier survival estimates for the soybean 

varieties Makwacha, Serenade Tikolore and Nasoko are displayed in the figures below. The survival 

durations for Makwacha, Serenade, Tikolore and Nasoko are 10, 26, 17 and 11 years, respectively, 
based on the Kaplan-Meier survival projections.  
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Figure 1: Kaplan Meier survival estimates and Nelson-Aalen hazard estimates of adoption of 

Makwacha soybean variety 

 

The adoption of the Makwacha soybean variety is shown in the graphs in Figure 1 above, with 

adoption rates decreasing from 100% in the first year to approximately 20% in the second year and 

0% after six to ten years. Concurrently, the risk of dis-adopting the variety rises at an accelerating 

rate, from 0.1 in the first year to 2.2 in the following four years, 3 in the following six years, and 4 in 

the following 10 years. 

 

 
Figure 2: Kaplan Meier survival estimates and Nelson-Aalen hazard estimates of adoption of 

Serenade soybean variety 

 

The probability of survival for Serenade in Figure 2 above decreases from 100% in the first year to 

20% in the following five years, less than 10% in the following 10 years, and 0% in the following 25 

years. Concurrently, the risk of not adopting the serenade variety rises from 0.3 in the first year to 1.5 

in the following five years, 3 in the following 15 years, and 5 in the following 25 years.  

 

 
Figure 3: Kaplan Meier survival estimates and Nelson-Aalen hazard estimates of adoption of 

Tikolore soybean variety 

 



AfJARE Vol 19 No 2 (2024) pp 147–165  Chirwa et al. 

 
 

161 

According to the Kaplan-Meier survival estimates, shown in Figure 3 above, the Tikolore variety 

experienced a decrease from 100% in the first year to 55% in the second, 22% in the third, and less 

than 5% in the following 10 and 0% in the following 15 years. In addition, the risk of not adopting 

the Tikolore variety rises using the Nelson Aalen hazard estimates, from 0.2 in year one to 2.1 in year 

five, 3.8 in the following 10 years, and five in the following 17 years. 

 

 
Figure 4: Kaplan Meier survival estimates and Nelson-Aalen hazard estimates of adoption of 

the Nasoko soybean variety 

 

The adoption survival rate of the Nasoko variety (see Figure 4 above) declined from 100% in the first 

year to 35% in the next two, and then to less than 5% in the following five years, and 0% in the 

following 10, according to Kaplan-Meier estimates. In addition, the dis-adoption rate rises from 0.2% 

in the first year to 3% in the following five years, and 4% in the following 10 years based on the 

Nelson-Aalen hazard rate of dis-adopting the Nasoko variety. 

 

Table 5 presents the results of a time-to-failure analysis using a semi-parametric Cox proportional 

hazard model to assess the relative risk of dis-adopting the Makwacha, Serenade, Tikolore and 

Nasoko varieties over time. The Nasoko model is significant at 1%, as are the Serenade and Tikolore 

models. Furthermore, it is also important to remember that estimates are the hazard ratios minus one 

to calculate the relative risk, because hazard ratios occur out of one. A farmer with very fertile land 

has a 21.97% lower risk of dis-adopting Serenade, as fertile land boosts productivity and profits 

compared to less fertile land. Alternatively, owning land on a slope increases the risk of dis-adopting 

Serenade by 18.09% due to vulnerability to soil erosion, which can further influence the effectiveness 

of herbicides and different water management practices. Households with bicycles as a mode of 

transportation have a 21% lower risk of dis-adopting Tikolore, as bicycles facilitate access to inputs 

and output markets. Farmers in Dedza district have a 39.65%, 32.45% and 84.80% lower risk of dis-

adopting Serenade, Tikolore and Nasoko, respectively, compared to farmers in Mzimba district. In 

contrast, farmers in Ntchisi district have a 65.92%, 76.12% and 41.61% lower risk of dis-adopting 

these varieties. Farmers in Kasungu and Lilongwe have a 32.13% and 24.59% lower risk of dis-

adopting Tikolore compared to those in Mzimba. Increasing labour by one man-day per hectare 

lowers the risk of dis-adopting Nasoko by 0.12%, as more labour improves care and management. 

However, the risk increases by 32.64% if the farmer has an iron-roofed house. 
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Table 5: Estimating hazard ratios for the dis-adoption of soybean technologies among 

smallholder farmers in Malawi 
 Makwacha Serenade Tikolore Nasoko 

Independent variables  Hazard ratio Hazard ratio Hazard ratio Hazard ratio 

Age -0.0017 -0.0004 -0.0040 0.0007 

 (0.003) (0.004) (0.003) (0.005) 

Education 0.0013 0.0136 0.0079 -0.0064 

 (0.009) (0.015) (0.011) (0.018) 

Sex of household head -0.0107 0.0788 -0.0037 0.3150* 

 (0.092) (0.182) (0.124) (0.186) 

Access to formal market -0.0221 -0.4051** 0.0389 0.1158 

 (0.112) (0.181) (0.123) (0.190) 

Fertile land -0.0288 -0.2952** 0.1580 -0.0513 

 (0.079) (0.125) (0.099) (0.145) 

Total area -0.0141 -0.0437 -0.0263 0.0255 

 (0.065) (0.083) (0.025) (0.024) 

Total labour quantity -0.0002 -0.0006 0.0002 -0.0017*** 

 (0.000) (0.000) (0.000) (0.001) 

Extension -0.0626 -0.2708** -0.1095 -0.1820 

 (0.078) (0.136) (0.097) (0.163) 

Bicycle 0.0113 0.0320 -0.2300** -0.3079* 

 (0.079) (0.152) (0.106) (0.160) 

Iron roofing 0.0012 -0.0110 -0.0827 0.4723*** 

 (0.099) (0.136) (0.108) (0.164) 

Radio 0.0605 -0.1194 -0.0516 0.0714 

 (0.088) (0.141) (0.106) (0.164) 

Medium depth -0.0195 -0.1327 -0.0829 0.2179 

 (0.077) (0.125) (0.098) (0.150) 

Dedza district 0.0266 -0.6445*** -0.3341** -0.9159*** 

 (0.117) (0.193) (0.152) (0.226) 

Medium slope 0.0736 0.1571 -0.0917 0.0840 

 (0.075) (0.116) (0.101) (0.147) 

Household size 0.0054 0.0024 0.0073 0.0307 

 (0.024) (0.030) (0.026) (0.039) 

Lilongwe district -0.1394 0.1208 -0.2716** -0.0282 

 (0.116) (0.166) (0.127) (0.216) 

Kasungu district -0.0206 -0.4610 -0.2532* -0.3981 

 (0.131) (0.300) (0.145) (0.286) 

Ntchisi district 0.0431 -0.7653*** -0.7629*** -0.2666 

 (0.105) (0.198) (0.168) (0.206) 

Wald chi 6.1799 52.4637 45.5012 42.4638 

Prob > chi2 0.9954 0.0000 0.0004 0.0010 

Observations 224 174 496 241 

Notes: Standard errors in parentheses; * = p < 0.10, ** = p < 0.05, *** = p < 0.01 

 

5. Conclusions and recommendations 

 

The main objective of this study was to assess whether the adoption of improved soybean varieties 

and their complementary agronomic practices enhance household food security among smallholder 

farmers in Malawi. Firstly, the study used endogenous switching regression to assess what influences 

the decision to adopt improved soybean varieties and agronomic practices; secondly, using treatment 

effects, the study sought to determine the effect of improved soybean varieties and agronomic 

practices on food security; and lastly, the study used a Cox hazard proportion model to determine the 

survival estimates and hazard relative risks of dis-adopting soybean varieties. The study modelled 

adoption based on a farmer’s awareness of the soybean varieties and their complementary agronomic 



AfJARE Vol 19 No 2 (2024) pp 147–165  Chirwa et al. 

 
 

163 

practices, as well as their continued use of the variety over the preceding three years, including the 

practice of double-row spacing.  

 

The results indicate that adopting improved soybean technologies significantly enhanced household 

food security among smallholder farmers. Specifically, the food consumption score and household 

dietary diversity score increased by 8 and 3.86, respectively. In addition, households that adopted 

these technologies experienced a reduction of 3.85 in their food insecurity access score. The findings 

from the Cox proportional hazards model show that various factors reduce the relative risk of dis-

adoption, such as bicycle ownership, access to formal markets, extension services, being a male 

farmer, having fertile land, increasing labour on the farm, and residence in Kasungu, Lilongwe, 

Ntchisi or Dedza districts. The results from the endogenous switching regression further show that 

the likelihood of adopting improved soybean varieties and agronomic practices increases for farmers 

who own a bicycle, have land on a medium slope and have access to formal markets, compared to 

farmers without these resources. In addition, compared to farmers in Mzimba district, those residing 

in Ntchisi district demonstrated a higher probability of adopting improved soybean varieties and 

agronomic practices.  

 

In conclusion, the study gives rise to the following recommendations: Firstly, the study suggests 

strengthening links to formal markets, which are critical for maintaining soybean production. In 

addition, increasing extension services designed specifically for soybean production promotes the 

adoption of better practices and gives farmers the technical know-how required for efficient crop 

management. Lastly, the study recommends conducting a similar study using panel data to capture 

the true impact of adoption on food security more accurately. 
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