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Abstract 

 

Index-based insurance has emerged as a compelling strategy for agricultural risk management in 

Africa, particularly in contexts where smallholder farmers are disproportionately exposed to climate-

related hazards. Despite its potential, the effectiveness of this mechanism is often constrained by the 

spatial heterogeneity of crop yield responses to climatic variables – an issue that significantly 

contributes to basis risk. This study investigates the value added by spatial econometric approaches, 

with a focus on the geographically weighted panel regression (GWPR) model, in enhancing the 

calibration of index-based insurance schemes under conditions of spatial instability in the 

relationship between maize yields and climate indicators in Burkina Faso. Drawing on panel data 

from eight meteorological stations spanning the period 1995 to 2009, the empirical analysis reveals 

a notable reduction in basis risk – estimated at 31.84% – when the GWPR model is applied. These 

results highlight the methodological relevance of GWPR for designing more context-sensitive and 

spatially adaptive insurance instruments, thereby offering a pathway toward more effective and 

equitable agricultural risk mitigation strategies in sub-Saharan Africa. 

 

Key words: GWPR, spatial heterogeneity, geographic basis risk, weather index insurance, risk-

pooling 

 

1. Introduction 

 

Agriculture in sub-Saharan Africa is heavily dependent on rainfall, rendering it acutely susceptible to 

climatic variability. To mitigate this vulnerability, index-based agricultural insurance (IBAI) has 

emerged as a key risk-management tool aimed at shielding smallholder farmers from losses associated 

with extreme weather events (Hazell & Hess 2010). Unlike conventional indemnity insurance, IBAI 

activates payouts based on remotely sensed indicators – such as precipitation or temperature indices 

– rather than actual losses. While this approach offers several operational advantages, it is hindered 

by a critical limitation: basis risk, defined as the mismatch between insured losses and the index-

triggered payouts. 
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Geographically weighted panel regression (GWPR) offers a promising methodological solution to 

this issue by explicitly accounting for spatial heterogeneity in the relationships between agroclimatic 

variables and agricultural performance. Spatial variation in crop yields poses a significant obstacle in 

the design of reliable index-based insurance products, as it directly influences the accuracy of payout 

indices (Barnett & Mahul 2007). This inherent risk compromises both the effectiveness and appeal 

of such products, especially in developing regions, where farming systems are highly sensitive to 

climatic shocks (Giné & Yang 2009). In line with this, Carter and Janzen (2018) underscore the 

challenge of constructing indices that are spatially precise enough to offer meaningful protection. 

Clarke (2016) further advocates for index structures that incorporate spatial variability as a means of 

reducing basis risk and ensuring contract sustainability. 

 

Empirically, Brunsdon et al. (1996) demonstrate that the capacity of the geographically weighted 

panel regression (GWPR) model to capture localised spatial effects enables insurers to fine-tune 

pricing and claims strategies in alignment with regional characteristics. Similarly, Anselin (2005) 

highlights the utility of spatial econometric models in capturing spatial dependencies, thereby 

enhancing risk assessment and the accuracy of payouts at finer geographic scales. 

 

This study aims to show that the GWPR model offers superior capacity to model the relationship 

between maize yields and climatic variables, thereby serving as a robust methodological foundation 

for the development of index-based insurance schemes that are responsive to local conditions in 

developing countries. To this end, the study evaluates the GWPR model against alternative 

approaches that incorporate varying degrees of spatial heterogeneity in the yield–climate relationship. 

 

The remainder of this article is organised as follows: Section 2 contextualises and justifies the 

research; Section 3 details the data and methodological framework; Section 4 presents and discusses 

the results; and Section 5 concludes the paper. 

 

2. Status of agricultural insurance in Burkina Faso 

 

Since the late 2000s, a growing number of initiatives across sub-Saharan Africa have sought to 

develop index-based insurance schemes grounded in climate variables such as rainfall and 

temperature. Currently, the World Bank is spearheading approximately 10 projects spanning around 

20 countries to support the expansion of this insurance model. A principal advantage of index 

insurance lies in its reliance on objectively, observable climatic indices, which are resistant to 

manipulation by stakeholders. By decoupling insurance payouts from actual individual yields, and 

instead linking them to predetermined climatic thresholds, this approach eliminates the need for costly 

field assessments and significantly reduces administrative expenses. 

 

Moreover, the structure of climate index-based insurance reduces vulnerability to fraud and moral 

hazard. Nonetheless, challenges persist, particularly regarding spatial misalignment, where insurance 

design fails to adequately reflect local agroclimatic conditions (Sarris et al. 2006). This issue is 

particularly pronounced in the Sudano-Sahelian regions, where rainfall exhibits exceptionally high 

spatiotemporal variability, significantly constraining agricultural productivity (Müller et al. 2012).  

 

2.1 Weather index insurance 

 

Index-based agricultural insurance presents a promising strategy for managing climate-related risks 

faced by small-scale farmers in developing countries. Its appeal lies in its simplicity, low 

administrative costs, and ability to mitigate information asymmetries such as adverse selection and 

moral hazard (Fuchs Tarlovsky & Wolff 2011). Unlike conventional insurance, payouts are triggered 
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when a predefined weather index (e.g. rainfall) crosses critical thresholds, rather than by assessing 

actual losses. 

 

However, the effectiveness of such insurance is constrained by basis risk – the discrepancy between 

real losses and payouts determined by the index. This can result in under-compensation for severely 

affected farmers and over-compensation for others. The extent of basis risk depends on factors such 

as index quality, geographic scale, and the nature of the shocks (Barré et al. 2016). It includes both 

idiosyncratic and covariate components, with the latter being more prevalent and impactful in sub-

Saharan Africa (Udry 1990). 

 

Since local risk-sharing is ineffective against widespread (covariate) shocks, formal insurance 

mechanisms are necessary. Consequently, index insurance schemes must be carefully designed to 

reflect the spatial heterogeneity of agricultural zones and to align closely with meteorological station 

data to reduce basis risk and enhance effectiveness. 

 

2.2 Study area: Agricultural regions of Burkina Faso 

 

Burkina Faso, located at the intersection of both humid and arid zones in West Africa, is defined by 

three major climatic regions. The southern Sudanese zone receives annual rainfall ranging from 900 

to 1 200 millimetres, while the central, sub-Sahelian zone experiences precipitation between 600 and 

900 millimetres annually. In the northern Sahelian zone, rainfall declines further to a range from 400 

to 600 millimetres per year. Like much of West Africa, Burkina Faso has been experiencing a 

persistent rainfall deficit since the early 1970s (Mahé & Paturel 2009), which mirrors a broader 

decline in precipitation levels observed between 1896 and 2006. This sustained reduction in rainfall 

presents significant socio-economic challenges, particularly as the nation’s primary economic sectors 

– agriculture and livestock farming – are highly dependent on seasonal precipitation. Consequently, 

each rainfall deficit leads to reduced agricultural output and heightens food insecurity. A notable 

aspect of this decline in rainfall is the decrease in the number of rainy days, which further exacerbates 

issues of water availability and agricultural productivity (Le Barbé & Lebel 1997). 

 

In many developing countries, including Burkina Faso, agricultural practices often fail to achieve 

optimal productivity, falling short of the potential yields that could be realised under prevailing 

climatic conditions. Administratively, Burkina Faso is divided into 13 regions, with meteorological 

stations situated in eight of these regions (see Table 1). The country follows a bimodal seasonal cycle, 

with a rainy season from May to September and a dry season from October to April. 

 

Table 1: Regional statistics 

Provinces 

Average 10-day rainfall 

(mm)  

Number of rainy days 

(average 10 days)  

Average temperature 

(degrees Celsius)  

Corn yield 

(t/ha) 

Centre 42.55 3.90 28.92 0.86 

Centre-Sud 59.90 4.40 27.27 1.13 

Est 49.82 4.05 28.17 1.14 

Hauts-Bassins 57.24 4.80 26.72 1.79 

Mouhoun 48.16 4.05 28.62 1.43 

Nord 42.43 3.38 29.71 0.77 

Sahel 30.94 2.91 31.14 0.56 

Sud-Ouest 57.17 4.05 27.08 1.47 

Note: Compiled by author using data from the National Meteorological Agency of Burkina Faso 

 

The variability in maize yields across the different regions exhibits a significant degree of 
heterogeneity. Specifically, the Sud-Ouest, Hauts-Bassins and the majority of the Centre-Sud regions 
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are situated within the Sudanese climatic zone. In contrast, the Mouhoun, Est and Centre regions are 

classified within the sub-Sahelian zone, while the Nord and Sahel regions fall within the Sahelian 

zone. Empirical observations indicate that maize yields generally tend to be higher in regions 

characterised by greater availability of water resources. 

 

2.3 Agricultural insurance in Burkina Faso 

 

Launched in 2011 through the collaboration of various international partners – including the Global 

Index Insurance Facility (GIIF), the Africa Enterprise Challenge Fund (AECF), Allianz for a Green 

Revolution in Africa (AGRA), as well as organisations such as CIRAD, Oxfam, Swiss Re and EARS 

– the “Sahel Crop Insurance” initiative has developed two primary products: drought insurance for 

maize producers and yield insurance for cotton producers. This initiative operates through eight 

distribution networks and provides coverage to more than 250 villages. 

 

Initially, the index insurance employed the relative evapotranspiration index from 2011 to 2014, 

before transitioning to an estimated satellite-derived rainfall index, starting with the 2015/2016 

campaign. The insured crops include maize, millet and peanuts, with coverage structured around three 

key growth phases: germination (40 days), flowering (30 days), and maturation (30 days). Maize 

represents over 86% of the demand for Sahel Crop Insurance coverage (William et al. 2016), which 

justifies the focus of this study on this particular crop. However, incorporating other crops in future 

research is essential to expand the demand for insurance products across a broader range of 

agricultural commodities. The scheme guarantees 75% of the total insured amount during the 

germination phase and 100% during the flowering and maturation phases. Premium rates vary 

regionally, ranging from 7.75% to 11.5% of the insured sum. 

 

The insurance scheme establishes a “trigger” threshold – representing the rainfall level below which 

compensation is activated – and an “exit” threshold, corresponding to the level at which maximum 

compensation is payable. Compensation is calculated proportionally between these thresholds: no 

payout occurs if accumulated precipitation exceeds the trigger level. If it falls below, the scheme 

provides a linear payout, with a fixed amount for each millimetre of rainfall below the upper threshold 

until reaching the exit threshold. If rainfall drops below this exit threshold, the maximum fixed 

compensation is paid. The total payments across the three growth phases are capped at the insured 

amount. 

 

Since its inception, the number of subscribers declined over the initial three years, decreasing from 

534 in 2012 to 378 in 2013, and further to 289 in 2014 (OXFAM 2016). 

 

The geographic area covered by index insurance is divided into four main areas: zone 1 (R1) is 

characterised by relatively abundant rainfall; the index insurance premium is 7.75% of the total 

guaranteed amount. Zone 2 (R2 and R3) is also well watered, and the insurance premium is 9.30% of 

the total guaranteed amount. Zone 3 (R4 and R5), located in the Sudano-Sahelian climatic zone, is 

quite heterogeneous in terms of precipitation, and the insurance premium is 10.80%. Finally, zone 4 

(R6) is relatively less watered than the other three, with an insurance premium of 11.50% of the total 

guaranteed amount (see Figure 1 for the zones). The mismatch between estimates and observations 

is seen as the main discouraging factor for index insurance adherence (OXFAM 2016). 
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Figure 1: Spatial pricing of index insurance in Burkina Faso 

 

2.4 Application of GWPR in African Index Insurance Systems 

 

Several studies in Africa have incorporated the geographically weighted panel regression (GWPR) 

model to capture spatially varying sensitivities of crop yields to climate factors. Dinku et al. (2010) 

used GWPR to analyse the correlation between satellite-derived rainfall data and crop yield in 

Ethiopia, revealing substantial local variation. This allowed for the localised design of weather 

indices, thereby improving the targeting of payouts. Similarly, Greatrex et al. (2015), in collaboration 

with the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), 

emphasise the potential of using spatially adaptive models like GWPR in designing area-yield index 

insurance for farmers in Kenya and Tanzania. The study underscored the importance of integrating 

historical yield data with spatially referenced weather information to minimise basis risk. 

 

In West Africa, Hellmuth et al. (2009) and Osgood et al. (2007) facilitated pilot weather index 

insurance programmes where GWR techniques were used to identify zones of homogenous risk. 

These zones served as the foundation for defining insurance units that reflect real-world climatic 

variation more accurately than administrative boundaries. In a study by El Ouardighi et al. (2020), 

GWPR was employed to analyse the spatial variability of agricultural yields across different regions 

in Morocco. This model enabled the identification of areas particularly sensitive to climatic variations 

by accounting for local effects and spatial dependencies. Through this approach, researchers were 

able to provide targeted recommendations for adapting agricultural practices and managing water 

resources, thereby contributing to the enhancement of the sector’s resilience to climate-related 

challenges specific to each region.  

 

The application of the GWPR model in the design of index-based insurance contracts entails the 

collection of climatic data for each agricultural season, stratified by regions or zones demonstrating 
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homogeneity in yield response to climatic variables. The GWPR model is then employed to estimate 

expected agricultural production for each zone. When estimated yields fall below a predefined critical 

threshold, indemnities are determined based on the shortfall between the threshold and the observed 

yield, adjusted by the applicable compensation rate. 

 

3. Method and data 

 

Previous studies (Cai et al. 2012) have demonstrated that the relationship between climatic variables 

and crop yields exhibits significant spatial heterogeneity across different geographical regions. 

Despite this, many researchers continue to employ “global” regression parameters – those derived 

from the entire study area – which can be problematic. Such global estimates may fail to accurately 

capture the localised correlations between variables, thereby potentially compromising the precision 

of predictive models (Cai et al. 2012). To address this limitation, various methodologies have been 

developed to generate localised adaptations of traditional multivariate regression techniques with the 

aim to improve the spatial specificity and predictive accuracy of the models. 

 

3.1 Method 

 

This study utilises the geographically weighted panel regression (GWPR) model (Cai et al. 2012) to 

examine the hypothesis that weather variations have distinct effects on corn yields across different 

regions of Burkina Faso. It also explores how this spatial heterogeneity can be integrated into the 

design of local index insurance contracts. To facilitate comparison, we estimate the relationship 

between corn yields and climatic variables using various models that reflect different levels of spatial 

heterogeneity. 

 

3.2 The global linear regression model 

 

We use the global linear regression model as a reference. This model completely ignores the 

possibility of spatial heterogeneity in the relationship between corn yields and climatic variables; it 

is the pooled model. The model is written as: 

 

𝑦𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑡𝑘𝑘 + 𝛾𝑡 + 𝜀𝑖𝑡,         (1) 

 

where 𝑖 represents a region and 𝑡 indicates the year; 𝑦𝑖𝑡 represents maize yields for region 𝑖 in year 𝑡; 
𝑥𝑖𝑡𝑘 indicates the 𝑘 climatic variables for the region 𝑖 in the year 𝑡; β𝑘 is the coefficient of the climate 

variable k, constant across regions and time; 𝛾𝑡 is the trend; β0 denotes the global constant; and ε𝑖𝑡 is 

the error term. 

 

If the relationship between corn yield and climate variables is well described by Equation (1), an 

identical index insurance contract is then proposed to producers in all regions. The spatial 

differentiation of index insurance contracts has no empirical basis. 

 

Is the hypothesis of spatial homogeneity (Model 1 in Equation (1)) implicitly taken for granted by 

many authors as being reasonable in a context marked by increasingly large geographical areas? In 

order to answer this concern, we develop methods to take into account a possible spatial 

heterogeneity. If we consider all the coefficients of a regression, the spatial heterogeneity can be 

present in the form of different constants and/or different slopes. In this general case, we then speak 

of structural instability in space, or “spatial regimes” (Anselin 1988). Previous research does not 

support the hypothesis that β is indeed constant across regions. According to Cai et al. (2012), the 
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hypothesis of the non-constancy of β across space is crucial if one is looking to develop an index 

insurance product that minimises geographical basic risk. 

 

3.3 Fixed-effects models 

 

The fixed-effects panel model is the most commonly used regression technique for analysing the 

relationship between climate change and crop yield (Deschenes & Greenstone 2007). The model is 

specified as follows: 

 

𝑦𝑖𝑡 = 𝛽0𝑖 + ∑ 𝛽𝑘𝑥𝑖𝑡𝑘𝑘 + 𝛾𝑡 + 𝜀𝑖𝑡           (2) 

 

The distinction between Model 1 and Model 2 (equations (1) and (2)) lies in the treatment of time-

invariant regional effects. While Model 1 assumes a global constant, thereby excluding region-

specific fixed effects, Model 2 incorporates such effects, accounting for structural heterogeneity 

across regions that remain stable over time. When the relationship between maize yields and climatic 

variables is adequately captured by Model 2, index-based insurance contracts can be differentiated 

solely by their threshold parameters, with a uniform indemnity structure across regions. The random 

effects specification was deliberately excluded, following the argument by Cai et al. (2012), as the 

regional fixed effects (β₀ᵢ) are likely to be correlated with the climatic regressors (Xᵢₜₖ), thereby 

violating the core assumptions of the random-effects model. 

 

3.4 The random coefficient model 

 

The random coefficient model suggests the presence of spatial heterogeneity in the form of different 

slopes. The standard model specifies a constant and random slopes for each region: 

 

𝑦𝑖𝑡 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑘𝑋𝑖𝑘𝑡 + 𝛾𝑡 + 𝜀𝑖𝑡𝑘 ,          (3) 

 

with 𝛽𝑖𝑘 = 𝛽0 + ∑ 𝛽𝑖𝑘𝑙𝑧𝑖𝑘𝑙 + 𝛿𝑖𝑘𝑙 . 

 

It is assumed in this formulation that Z is a vector of random variables capable of influencing the 

effect of the explanatory variables, X, on the dependent variable, Y. 

 

The model uses a weighting inversely proportional to the regional variance, as regions with greater 

volatility of observations are involved with a lower weight in the estimation of the overall coefficient. 

We can then say that regional heterogeneity has been taken into account, although this model does 

not take into account the spatial dependence, i.e. the influence that a region exerts on other regions 

according to geographic, cultural or commercial proximity. 

 

A relationship of type (3) (as in Equation (3)) suggests index insurance contracts that are totally 

different from one region to another at both the thresholds level and the progressivity level. 

Otherwise, the thresholds for triggering compensation differ from one region to another, but the 

proportional change in compensation from the level of the index between the trigger and the exit 

thresholds must also differ from one region to another. 

 

3.5 The geographically weighted panel regression (GWPR)  

 

Geographically weighted panel regression (GWPR) extends the capabilities of traditional panel data 

models by incorporating spatial non-stationarity, allowing regression coefficients to vary across 

geographic locations.  
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Geographically weighted regression (GWR) is a spatial analytical technique that employs weighted 

observations from neighbouring regions to estimate localised regression parameters at each spatial 

unit. The weights assigned to observations are inversely proportional to the distance between regions, 

reflecting the premise that geographically proximate areas exert a greater influence on each other’s 

estimates.  

 

The GWPR model is presented as a random coefficient model: 

 

𝑦𝑖𝑡 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑘𝑋𝑖𝑘𝑡 + 𝛾𝑡 + 𝜀𝑖𝑡𝑘            (4) 

 

Unlike the random coefficient model, in which the coefficients, βi, are treated as random variables, 

GWR assumes that these coefficients are deterministic functions of the spatial coordinates associated 

with each observation (Brunsdon et al. 1996; Fotheringham et al. 2002). The calibration of the GWR 

model is typically performed using a weighted least squares (WLS) approach, which presumes that 

data points in close proximity to a given location have a more significant impact on the estimation of 

the local parameters, βik, than those located farther away, thereby capturing spatial heterogeneity in 

the relationships under study.  

 

The weighted least squares estimator is given by: 

 

          (5) 

 

where 𝛽̂ is an estimate of β, and 𝑊(𝑖) is a diagonal spatial weighting nt × nt matrix, whose diagonal 

elements are the geographic weighting of the observations of each of the n neighbouring regions to 

the region i. The weighted least squares estimator is obtained by the following transformed model: 

 

𝑃𝑦 = [

𝜔𝑖1𝑦1

𝜔𝑖2𝑦2

⋮
𝜔𝑖𝑛𝑦𝑛

] on 𝑃𝑋 = [

𝜔𝑖1𝑋1

𝜔𝑖2𝑋2

⋮
𝜔𝑖𝑛𝑋𝑛

],          (6) 

 

with 𝜔𝑖𝑗 the geographical weighting of the observations of the region j relative to the reference region 

i (𝜔𝑖𝑖 = 1). Since we are in panel, each region contains T observations, and the extensive writing of 

the model gives 

 

𝑦∗ = 𝑃𝑦 =

[
 
 
 
 
 
𝜔𝑖1𝑦11

𝜔𝑖1𝑦12

⋮
𝜔𝑖1𝑦1𝑇
𝜔𝑖2𝑦21

⋮ ]
 
 
 
 
 

 on 𝑋∗ = 𝑃𝑋 =

[
 
 
 
 
 
𝜔𝑖1𝑋11

𝜔𝑖1𝑋12

⋮
𝜔𝑖1𝑋1𝑇

𝜔𝑖2𝑋21

⋮ ]
 
 
 
 
 

.         (7) 

 

y* is a (nT, 1) vector and X* is an (nT, K) matrix; the regression of y* on X* produces an estimate 

𝛽̂(i) of β(i), the coefficient vector for region i. Thus, the GWPR model is obtained by region-by-

region estimation, while taking into account spatial dependencies between regions. 

 

Similar to the model with random coefficients, the heterogeneity across regions pertains to all 

coefficients, including the slopes. Specifically, the relationship between yields and weather 

conditions varies from one region to another, underscoring the necessity to design a tailored index 
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insurance contract for each region. According to Cai et al. (2014), the GWPR approach provides a 

more effective framework for integrating weather dynamics with crop productivity, particularly in 

study areas characterised by diverse topographical and climatic conditions. 

 

In this study, we employ an adaptive bi-square kernel weighting function (Bruna & Yu 2013): 

 

𝑤𝑖𝑗 = { [1 − (𝑑𝑖𝑗/ℎ𝑖)]
2
 𝑖𝑓 𝑑𝑖𝑗 < ℎ𝑖

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,          (8) 

 

where 𝑑𝑖𝑗 denotes the distance between region (i) and region (j), measured between their respective 

capital cities. The parameter ℎ𝑖 controls the radius of influence of the geographical data. Given the 

limited number of regions and the effects of migration, we assume that all regions influence each 

other, with the influence inversely proportional to the distance between them. To standardise the 

radius of influence across all regions, we set (ℎ𝑖 = ℎ𝑗 = ℎ)  ∀ (𝑖, 𝑗)  ∈  [1 2 . . . 𝑛]2). Furthermore, to 

ensure that all regions are incorporated into the estimation for each region, (i), we select (h) such that  

 

ℎ𝑖 = 𝑚𝑎𝑥(𝑑𝑖𝑗)  ∀ (𝑖, 𝑗) ∈ [1 2 …𝑛]2.        (9) 

 

This allows us to control the extent of the circle of influence of the geographical data. In our case, 

given the small number of regions and the effects of migration, we consider here that all regions have 

an influence on each other, but that this influence is inversely proportional to the distance between 

regions. To have the same radius of influence for all regions, we make the ℎ𝑖 identical for all regions 

(ℎ𝑖 = ℎ𝑗 = ℎ)  ∀ (𝑖, 𝑗)  ∈  [1 2 . . . 𝑛]2); and to ensure that all regions are integrated into the estimate 

for region i, we choose h such that: 

 

ℎ𝑖 = 𝑚𝑎𝑥(𝑑𝑖𝑗)  ∀ (𝑖, 𝑗) ∈ [1 2 …𝑛]2.        (10) 

 

In our case, the maximum distance (h) is 658 km, corresponding to the greatest separation between 

two regions, namely Dori and Gaoua. 

 

In the context of geographically weighted panel regression (GWPR), the selection of kernel functions 

and bandwidth determination methods is a crucial methodological consideration, as both elements 

define the spatial weighting scheme and significantly influence the model’s ability to capture spatial 

heterogeneity. 

 

Kernel functions determine how spatial proximity influences the weighting of observations. 

Commonly used options include the fixed Gaussian kernel, which provides smooth, stable estimates 

for uniformly distributed data (Fotheringham et al. 2002), and the bi-square kernel, which emphasises 

nearby observations by assigning zero weight beyond a specified distance – useful for detecting sharp 

local variations (Brunsdon et al. 1996). Alternatively, adaptive kernels adjust bandwidths to include 

a fixed number of neighbours, making them ideal for unevenly distributed spatial data (Nakaya et al. 

2005). In this study, an adaptive kernel was chosen to ensure that all regions are included in the 

bandwidth, based on the assumption that spatial influence decreases with distance, but never entirely 

vanishes. 

 

Bandwidth selection further influences model performance. A large bandwidth risks over-smoothing, 

while a small one may yield unstable estimates. Cross-validation is commonly used to balance bias 

and variance (Fotheringham et al. 2002), while the Akaike information criterion corrected (AICc) is 

favoured for small samples due to its consideration of model complexity (Charlton & Fotheringham 
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2009). The Bayesian information criterion (BIC), which penalises model complexity more heavily, 

is suitable when overfitting is a concern (Wheeler & Tiefelsdorf 2005). 

 

Given the limited number of spatial units in our study (eight locations), an adaptive bandwidth 

encompassing all observations was selected, as recommended in the context of small samples 

(Durrieu et al. 2014). Ultimately, the choice of kernel type and bandwidth must align with the spatial 

structure of the data and the analytical objectives. Our approach reflects the view that spatial 

interdependence is never zero, thereby supporting the use of adaptive methods for robust local 

estimation. 

 

3.6 The variables 

 

The dependent variable in this study is the average maize yield per hectare, expressed in tons per 

hectare. The climatic variables included in the analysis comprise 10-day cumulative rainfall 

(Rainfall), defined as the total precipitation (in millimetres) recorded over each 10-day period; the 

number of rainy days (NbRD) within the same interval; and the average temperature (Temperature) 

over the corresponding period. The selection of these climatic indicators is grounded in a robust body 

of empirical research, including studies by Christiaensen and Dercon (2007), Lobell et al. (2007) and 

Cole et al. (2009), which highlight their significant influence on agricultural productivity. 

 

3.7 Data 

 

The present study utilises daily meteorological data – including rainfall, temperature and number of 

rainy days – collected by the Burkina Faso National Meteorological Service from a network of 10 

synoptic stations: Bobo Dioulasso, Bogandé, Boromo, Dedougou, Dori, Fada N’Gourma, Gaoua, 

Ouagadougou, Ouahigouya and Po. Given that the Fada N’Gourma and Bogandé stations are both 

located within the Eastern region, the Fada N’Gourma station was selected as representative, being 

the regional capital. Similarly, the Dedougou station was retained in lieu of Boromo to represent the 

corresponding agricultural region. Consequently, the analysis is based on data from eight synoptic 

stations corresponding to the eight agricultural regions of Burkina Faso. Maize yield data were 

obtained from the National Institute of Statistics and Demography (INSD) and cover the period from 

1995 to 2009. 

 

4. Results and discussion 

 

This section presents the results of several models that examine the relationship between maize yields 

and various climatic variables, incorporating different degrees of spatial heterogeneity. In addition, 

the section explores the design of an optimal index-based insurance contract aimed at minimising 

basis risk through enhanced spatial integration. 

 

4.1 Spatial variation in the relationship between maize yield and climatic conditions 

 

This study investigates the relationship between maize yield and climatic variables through the 

application of four econometric models, each incorporating progressively greater levels of spatial 

heterogeneity. 

 

Model 1, a global linear specification, operates under the assumption of complete spatial homogeneity 

in the relationship between yield and climatic factors. It demonstrates limited explanatory power, 

with climatic variables accounting for just over 50% of the variation in yield, and a residual sum of 

squares (RSS) of 12. Model 2, a fixed-effects panel model, introduces spatial heterogeneity in 
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intercepts, while maintaining constant slopes for climatic variables across regions. However, it 

performs less effectively than Model 1, as reflected by an increased RSS exceeding 20. Model 3, a 

random-coefficients model, extends spatial heterogeneity further by allowing both intercepts and 

slopes to vary across space. The Hausman test results support the rejection of Models 1 and 2 in 

favour of Model 3, indicating significant structural variation in how maize yields respond to 

agroclimatic conditions regionally. These outcomes highlight the essential role of accounting for 

spatial heterogeneity in agricultural yield modelling. Model 4, the geographically weighted panel 

regression (GWPR) model, outperforms the preceding models in estimating maize yields from 

climatic variables (see Table 2). With an R² of 0.85 and a markedly lower RSS of 6.97, it offers the 

closest alignment between predicted and observed yields across diverse agroclimatic zones, affirming 

its suitability for spatially explicit agricultural analysis. 

 

Table 2: Results of models 1, 2, 3 and 4 

Notes: ***, ** and * represent a 1%, 5% and 10% degree of significance, respectively; NbRD = number of rainy days 

 

This instability in the relationship between maize yield and climatic variables is evident in the spatial 

variability of the estimated coefficients (slopes) associated with the climatic factors, as presented in 

Table 3. The variation in these coefficients across geographic regions indicates that the sensitivity of 

maize yields to changes in climatic conditions – such as temperature, rainfall amount and number of 

rainy days – is not uniform. Instead, it reflects localised agro-ecological and socio-economic contexts, 

including differences in soil characteristics, farming practices and access to adaptation technologies. 

Such heterogeneity suggests that a one-size-fits-all modelling approach may overlook crucial region-

specific dynamics, underscoring the necessity of spatially disaggregated analyses. 

 

Table 3: Model 4 results by region 
Regions Rainfall NbRD Temperature Trend Constant R2 

Centre 0.010706*** 0.14652*** -0.01662*** 0.02415*** 0.11520*** 0.6973 

Centre-Sud 0.0040391 0.21969*** -0.12018* 0.02355*** 0.04794*** 0.8961 

Est 0.010757*** 0.19712*** -0.00775 0.00022 0.01508 0.9327 

Hauts-Bassins 0.004567 0.42498*** -0.00411 0.01868** -0.05177** 0.9423 

Mouhoun 0.011856* 0.29308*** -0.01901** 0.02966*** -0.0738*** 0.8578 

Nord 0.015044*** 0.20414*** -0.02492*** 0.02468*** 0.03311 0.7477 

Sahel 0.013098*** 0.134262** -0.01388*** 0.02588*** 0.00646 0.8386 

SudOuest 0.0079358 0.34990*** -0.01714* -0.01031 -0.00559 0.9494 

Notes: ***, ** and * represent a 1%, 5% and 10% degree of significance, respectively; NbRD = number of rainy days 

 

The spatial analysis of climatic variables reveals differentiated impacts on maize yields across 

ecological zones. Rainfall significantly influences yields in drier areas, such as the Sahelian and sub-

Sahelian zones, while in the well-watered Sudanian zone, its effect is not significant. In contrast, the 

number of rainy days, a proxy for the temporal distribution of rainfall, positively and significantly 

affects yields in all regions, although its impact is more pronounced in the Sudanian zone. 

Temperature exerts a uniformly negative influence on maize yield across all regions, likely because 

average temperatures exceed the optimal range for maize growth (Cai et al. 2014).  

Dependent variable Model (1) Model (2) Model (3) Model (4) (GWPR) 

Corn yield    Min Mean Max 

Rainfall 0.0031 0.0084** 0.0078 0.0040 0.0097 0.0150 

NbRD 0.2382*** 0.1805** 0.2042** 0.1343 0.2462 0.4249 

Temperature -0.1108*** 0.0875 0.0229 -0.1201 -0.0279 -0.004 

Trend (t) 0.0259** 0.0102 0.0121 -0.0103 0.0171 0.0296 

Constant 2.9939* -2.5540 -0.7737 -0.0738 0.0108 0.1152 

Number of observations 112 112 112 112 112 112 

R2 0.5393 - - - 0.8577 - 

Sum of square errors 12.0890537 20.1335919 15.2351394 - 6.9738 - 
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Although the findings indicate spatial instability in the relationship between maize yields and climatic 

variables, it is crucial to evaluate the temporal stability of this relationship. While the CUSUM tests 

did not detect structural instability in the model coefficients across the eight regions, the relatively 

short time span of the data does not provide sufficient assurance regarding the long-term reliability 

of these results. To obtain more robust conclusions, it is necessary to conduct stability tests using a 

longer time series. 

 

4.2 Designing weather index insurance accounting for spatial heterogeneity 

 

Traditional weather index insurance models frequently rely on uniform climatic thresholds (Model 

1), grounded in the implicit assumption of spatial homogeneity in crop yield responses to climatic 

variables. However, this assumption oversimplifies the complex interactions between climate 

conditions and agricultural productivity. The empirical results demonstrate the limitations of such 

models: while the global linear model accounts for only 54% of maize yield variability, the 

geographically weighted panel regression (GWPR) model – by incorporating spatial heterogeneity 

and geographic dependence – raises the explanatory power to over 85%. 

 

Alternative approaches, such as Model 2, attempt to address spatial variability by adjusting trigger 

thresholds or premium levels. However, these models fall short by neglecting localised climate-yield 

dynamics. This omission results in considerable inefficiencies, reflected in low explanatory power 

and a persistent misalignment between indemnity payments and actual yield losses. 

 

Table 4: Results of Model 4 with rainfall alone as an explanatory variable 
Region Rainfall Constant R2 

Centre 0.01732*** 0.10064*** 0.6516 

Centre-Sud 0.01742*** 0.06698*** 0.8674 

Est 0.02202*** -0.01016 0.9157 

Hauts-Bassins 0.03064*** -0.04289 0.9038 

Mouhoun 0.00128*** 0.02987** 0.8333 

Nord 0.01883*** 0.05646** 0.6935 

Sahel 0.01864*** 0.01264 0.8069 

SudOuest 0.02606*** -0.00593 0.9392 

 

The evaluation of rainfall as a single index variable in Model 4 (see Table 4) illustrates both the 

potential and the limitations of simplified index structures. Rainfall proves to be a strong predictor of 

maize yields in arid zones such as the Sahel, where it accounts for a substantial proportion of yield 

variation. However, its predictive relevance diminishes in semi-arid regions such as Centre and Nord, 

where adaptive farming practices and off-season cultivation attenuate the direct link between 

precipitation and yield. Cai et al. (2012) highlight the limitations of using variables such as 

temperature or the number of rainy days as sole indices linking yield to climatic variability. These 

observations underscore the importance of integrating multiple climatic indicators into index 

construction to enhance the precision and overall effectiveness of insurance products. 

 

Beyond improved statistical fit, the GWPR model contributes to a significant reduction in average 

basis risk – estimated at 31.84%. This improvement is attributable to the enhanced accuracy of loss 

estimation achieved through spatially differentiated modelling, in contrast to the global linear 

specification. 

 

Nevertheless, the study is not without methodological limitations. First, using administrative regions 
as the primary spatial unit of analysis may obscure considerable intra-regional variability. Employing 

more granular spatial data – at the provincial or departmental level – would facilitate more precise 
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modelling of spatial effects. Second, treating the maize production cycle as a temporally 

homogeneous unit overlooks the distinct sensitivities of different phenological stages of climatic 

stress. Temporal disaggregation would therefore provide deeper insight into how climate factors 

affect crop yields across various stages of development. Third, the temporal scope of the dataset (1995 

to 2009) constrains the ability to detect long-term structural shifts in the climate-yield relationship. 

While CUSUM tests reveal no structural parameter instability within the study period, a longer 

observation window would support more robust parameter stability testing. Finally, the exclusion of 

five administrative regions due to data limitations, despite the fact that the Sahel Crop Insurance does 

not currently cover these regions, reduces the national representativeness of the model and poses a 

significant obstacle to the broader objective of achieving universal agricultural insurance coverage. 

In addition, this can represent a methodological limitation, as uncovered regions may influence those 

that are covered, thereby presenting a constraint of the current approach. 

 

5. Conclusion 

 

This study investigated optimal methods for integrating spatial heterogeneity into the design of index-

based agricultural insurance. Using maize yield and climate data from eight regions in Burkina Faso, 

four econometric models were evaluated to capture spatial variations in yield responses to climatic 

factors, particularly rainfall. The results indicate that conventional models such as OLS, fixed effects 

and random coefficient approaches inadequately represent spatial complexity in the presence of 

autocorrelation and inter-regional variability. In contrast, the geographically weighted panel 

regression (GWPR) model offers significantly improved explanatory power and predictive accuracy 

by accounting for spatial dependence and parameter heterogeneity. 

 

The analysis reveals pronounced regional disparities in climate-yield relationships, reinforcing the 

need for locally calibrated insurance contracts. Effective index insurance design must incorporate 

spatially differentiated parameters – including trigger thresholds, exit points and payout mechanisms 

– to reduce geographic basis risk. Failure to do so may contribute to low uptake and high attrition 

rates in existing weather index insurance programmes, driven by a persistent mismatch between 

indemnity payments and actual yield losses. 
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