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Abstract 

  

The hazards and impacts of climate change are exacerbating. They threaten crop productivity, 

farmers’ resilience and the mitigation of greenhouse gas (GHG) emissions. Understanding climate-

smart agriculture (CSA) and applying it is crucial. However, the adaptation measures of smallholder 

farmers remain contextual, particularly whether small-scale farmers adopting CSA boost crop 

productivity and income scarcity. This study examines the drivers of CSA adoption and its impacts 

on farm performance. We used nationally representative data from a sample of 1 862 farmers 

cultivating less than two hectares. Endogenous switching regression (ESR) was employed to address 

the selection and endogeneity issues of CSA adoption. Propensity score matching (PSM) was adopted 

for comparative purpose. The results of both models are consistent that CSA adoption augments 

productivity and income. Interestingly, if non-adopters had adopted, they would have gained 

remarkably. The results imply that plausible programmes, promotions, campaigns or policy support 

measures to scale up CSA adoption can make a significant contribution to food security and poverty 

reduction, build farmers’ resilience, and mitigate the effects of GHG in the agricultural sector. 

 

Key words: Tanzania, climate change impact, climate-smart agriculture, income, crop production, 

endogenous switching regression model, propensity score matching, farmers 

 

1. Introduction 

 

The hazards and impacts of climate change are globally overwhelming (Ray et al. 2019). The 

elements of weather, such as temperature, are continuously rising, and precipitation patterns are 

becoming unreliable. Severe events, such as prolonged droughts, extreme heatwaves, wildfires, 

floods, diseases and pests, melting glaciers, earthquakes, lake saturation, storms, hurricanes, water 

shortages, avalanches, human healthcare issues, and season and lifestyle changes, are occurring 
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everywhere (Winthrop et al. 2018; Hussain et al. 2020). These events have persistently threatened 

anthropogenic activities and lives, ecosystems, biodiversity, animal habitats, land degradation, water 

bodies and forests (Hussain et al. 2020). There is the potential that they could increase and trigger 

significant damage in the future if no reliable measures are taken.  

 

Livelihoods and the agricultural economy, especially in resource-poor countries, are at even higher 

risk (Huang et al. 2011). The well-being of small farmers and rural economies are affected, given that 

crop markets are interrupted by climate change, which harms the food supply (Hellin & Fisher, 2018). 

Consequently, poverty, hunger, food insecurity, low economic growth, environmental degradation 

and unemployment are predominant (FAO 2017a).  

 

The increase in global population adds more pressure to crop production and food availability. For 

instance, the global population is projected to hit nine billion by 2050 (Rockström et al. 2016). In 

2019, about 821 million people faced food insecurity globally, including 236 million people from 

Sub-Saharan Africa (SSA) (FAO, 2019). Furthermore, the effects of climate change on food security 

and income are more pronounced in low-income countries whose economies depend on agriculture. 

The data shows that, in 2022, about 2.8 billion people had no access to a healthy diet, and the severity 

of this is felt more in SSA. For instance, about 71.5% of the population in this region are from low-

income countries, 52.6% from low middle-income countries, 21.5% from upper middle-income 

countries, and 6.3% are from high-income countries (FAO et al. 2024).  

 

The impacts of climate change are projected to have the potential to cascade beyond food production 

systems (Mirzabaev et al. 2023). About 713 to 757 million people faced hunger in 2023, fuelled in 

the wake of the Covid-19 pandemic. This means that one out of 11 people in the world and one out 

of five people in Africa go to sleep without a meal. Hunger is still on the rise in Africa, while countries 

in Asia, Latin America and the Caribbean have remained relatively stagnant from 2021 to 2024. If no 

relevant initiatives are taken, about 582 million people will be chronically undernourished globally 

by 2030 (FAO et al. 2024).  

 

Climate is crucial for crop productivity (Akter et al. 2022) and for agricultural income generation 

(Amadu et al. 2020a). Various measures have been put in place to mitigate the effect of climate 

change on crop production to improve farmers’ adaptive ability, resilience and efficiency in the 

utilisation of scarce resources in agricultural activities (Islam & Nursey-Bray 2017).  

 

The adoption of climate-smart agriculture (CSA) is the most popular and common adaptable approach 

to dealing with climatic shocks (FAO 2013). CSA reduces emissions of greenhouse gases (GHG), 

increases crop production, and increases farmers’ resilience to extreme weather shocks in agriculture 

(Hellin & Fisher 2018; Mirzabaev et al. 2023). It is particularly crucial to adopt CSA to improve crop 

production to meet the demand-and-supply equilibrium and ensure food security (Hellin & Fisher 

2018), which is likely to improve resilience in the face of adverse climatic conditions. Food 

production must increase between 60% to 110% to be able to feed the projected population increase 

(Pardey et al. 2014). This is possible because CSA does more than augmenting the productivity, 

mitigation and resilience of farmers (Amadu et al. 2020a). It is a holistic approach that brings together 

prominent stakeholders, including researchers, farmers, policymakers, societies and the public and 

private sectors (Lipper et al. 2014; Akter et al. 2022), to work together to face climate-induced shocks. 

 

Furthermore, the adoption of CSA is in pursuit of sustainable development goal (SDG) 13 (combating 

the impacts of climate change) and the attainment of its targets (Newell et al. 2019). CSA adoption 

enhances agricultural transformation by improving farming performance, leading to a sustainable 

environment. CSA enhances crop productivity, mitigates the effect of greenhouse gas emissions, and 
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increases agricultural resilience when facing the implications of climate change (Bhatnagar et al. 

2024).  

 

CSA, as a holistic approach, brings together all stakeholders to take every possible action aimed at 

increasing awareness of and developing strategies for adaptation by promoting environmentally 

friendly practices (Hussain et al. 2020). There is political will across the globe to adhere to agreements 

such as reducing GHG emissions. Governments devote funds to enhance adaptation to climate change 

and reinforce policies to promote the adoption of climate action such as CSA in agriculture (United 

Republic of Tanzania [URT] 2013). 

 

The adoption of CSA enhances the attainment of the SDGs of ending poverty and hunger, promoting 

inclusive economic growth, and creating employment and decent jobs for all (United Nations 

Development Programme 2015) through agricultural transformation, which improves farmers’ 

resilience (Amadu et al. 2020a). However, climate change is considered a complex problem (Hellin 

& Fisher 2018) and context/location-specific (Ngaiwi et al. 2023), requiring contextual investigation 

for critical understanding.  

 

To date, several studies have been on CSA since its introduction as a concept by the FAO (2010) in 

Tanzania and the neighbouring countries that share some climatic characteristics. For instance, 

studies in Kenya investigated determinants of CSA usage and adoption constraints among 

smallholder farmers (Autio et al. 2021; Musa et al. 2022). In Uganda and Tanzania, Mwongera et al. 

(2017) evaluated context-specific issues for local community adoption of CSA technologies. Also in 

Tanzania, the literature includes studies about determinants, challenges, the impact of climate change 

on a crop-specific basis, and the impact of CSA on households’ food security (Rowhani et al. 2011; 

Craparo et al. 2015; Kimaro et al. 2015; Kurgat et al. 2020; Mugabe 2020; Ogada et al. 2020, 2021; 

Bongole et al. 2022; Bongole 2023; Jones et al. 2023). While stakeholders believe that CSA augments 

productivity and income, there is scant empirical evidence in Tanzania in this regard for smallholder 

farmers. The link between climate change adoption measures with production and the income of 

smallholder farmers is not clear.  

 

This study examines the determinants of CSA adoption and its effect on crop yields and income in 

Tanzania using nationally representative data from a sample of 1 862 smallholder farmers. The study 

applied the endogenous switching regression (ESR) and propensity score matching (PSM) models 

that address the weaknesses in impact assessment studies, such as potential endogeneity and sample 

selection bias (Ma et al. 2018).  

 

Therefore, the paper contributes to the literature as follows: first, it contributes by advancing the 

literature on the determinants of CSA adoption and its effects on farm performance and income 

among small-scale farmers. Second, the paper contributes to the impacts of CSA adoption on crop 

production and income. Resource-poor communities can boost productivity and income through the 

effective adoption of CSA. Eventually, farmers’ resilience is improved and the SDGs are attained in 

given climatic variations (Mwalupaso et al., 2020). Finally, the paper contributes to the formulation 

of policy support measures for CSA adoption. The analysis of crop specificity confirms the 

importance of feasible policy support measures. It is crucial to improve the adoption by and crop 

production of specific farmers, as crop requirements, climate change impacts and environmental 

factors vary among farmers (Khatri-Chhetri et al., 2016; Hellin & Fisher 2018). 

 

The rest of this paper is structured as follows: Section 2 consists of the context of and background to 

CSA; Section 3 describes the methodology (data, variables and empirical approach); Section 4 
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presents the empirical results, the discussion and limitations, whereas Section 5 highlights the 

conclusion and policy implications. 

 

2. The context and background  

 

2.1 Empirical literature review  

 

CSA has been well researched since the introduction of the idea (FAO 2010). The adoption of CSA 

practices in agriculture has been documented from different dimensions and capacities in the extant 

literature. The extant empirical literature outlines the determinants and benefits associated with CSA 

adoption, and several studies reveal a correlation between the adoption of CSA technologies and 

improved crop production, farmers’ resilience, and climate-change mitigation. Furthermore, the CSA 

approach to climate change has attracted important research worldwide (Akter et al. 2022).  

 

Among the studies that focus on the determinants of CSA adoption are Shemsanga et al. (2010), 

Dercon and Christiaensen (2011), Teklewold et al. (2013), Balew et al. (2014), Berger et al. (2017), 

Mwongera et al. (2017), Nyasimi et al. (2017), Wekesa et al. (2018), Kurgat et al. (2020), Teklewold 

et al. (2020), Habtewold (2021), Smith et al. (2021), Ogada et al. (2021), Belay et al. (2022), Bongole 

et al. (2022), Kifle et al. (2022), Musa et al. (2022) and Jena et al. (2023). 

  

Some studies focus on the challenges or barriers that hinder the effective adoption of CSA (Nyasimi 

et al. 2017; Ogada et al. 2020), whereas others investigated the implications of CSA adoption and 

technological diffusion at farm level (Erekalo et al. 2024). Further studies have examined the effects 

of CSA adoption on the reduction of the carbon footprint for sustainable maize production (Feng et 

al. 2023). 

 

Other studies have focused on the impact of CSA adoption on the production of specific crops. These 

have focused mostly on maize and the associated impact on income (Dercon & Christiaensen 2011; 

Teklewold et al. 2013; Balew et al. 2014; Murray et al. 2016; Berger et al. 2017; Amadu et al. 2020a; 

Habtewold 2021; Belay et al. 2022; Kifle et al. 2022; Coderoni & Pagliacci 2023; Jena et al. 2023). 

 

Jena et al. (2023) and Rodríguez-Barillas et al. (2024) investigated the impact of the adoption of CSA 

on farmers’ resilience, behaviour, policy acceptability and comprehensiveness, whereas Bongole et 

al. (2022) assessed how CSA adoption improves food security. These studies provide insights into 

how CSA adoption can variably be effective and relatively impact farm performance. 

 

These studies further demonstrate limitations, such as being context specific, producing mixed results, 

and being crop specific, with a limited sample size. This means that researchers currently have 

produced relatively heterogeneous findings about the determinants of CSA adoption and its impacts 

on farm performance and income in Tanzania. If academics, policymakers and researchers want to 

understand the factors that drive CSA adoption and their relationship with crop farming and income, 

then investigating what influences the successful adoption of CSA and the impacts on crop yields and 

income is crucial.  

 

This paper examines the determinants of CSA adoption, and its impacts on crop productivity and 

income using nationally representative cross-section data of 1 862 smallholder household farmers in 

Tanzania. The synthesis of the empirical literature shows that information on crop (maize, paddy and 

beans) productivity and the income impact of CSA in Tanzania remain scanty. This article aimed to 

fill this gap. 
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2.2 The agricultural sector, climate change, and CSA adoption in Tanzania 

 

Agriculture is a key activity for livelihoods and the backbone of the Tanzanian economy (URT 2016; 

Bongole et al. 2022). Agriculture contributes 28% of GDP, 95% of all food, and about 80% of 

Tanzanians are involved in agriculture (Gwambene et al. 2023). A large part of this farming 

population comprises smallholder farmers who are resource-poor (Bongole et al. 2020; Ogada et al. 

2021; Gwambene et al. 2023). About 65.5% of the workforce is in the sector (URT 2014), whereas 

90% are small-scale farmers cultivating 0.2 to 2 hectares in rural areas (Rapsomanikis 2015).  

 

About 60% of farmers are involved in crop production, 37% deal with mixed farming, and 1% engage 

in pastoralism. Crops cultivated annually as a percentage of land range from cereals (67%) to legumes 

(11%), oil seeds and nuts (11%), cash crops (7%), and fruits and vegetables (1%) (URT 2014). The 

staple food grains that are produced mainly include maize and paddy (Mrema et al. 2023), as well as 

beans, which are legumes that restore soil nutrients and are largely consumed (Mutungi et al. 2022). 

Farm productivity has remained relatively low for decades, at about 10%, partly due to exacerbating 

climate change impacts (Irish Aid 2011). 

  

Agricultural practices in Tanzania depend on the natural levels of rain and temperature, with limited 

irrigation schemes (Kurgat et al. 2020; Ogada et al. 2021). Climate change has altered precipitation 

and temperature patterns, harming crop production. It is evident that there has been a decline in 

rainfall of 2.8 mm, which is 3.3%, over 10 years, and temperature has increased by 1.0°C since 1960 

(Winthrop et al. 2018). It is further projected that mean annual temperature will increase by 1.0°C to 

2.7°C in the 2060s, and by 1.5°C to 4.5°C in the 2090s (Winthrop et al. 2018).  

 

Following the impact of climate change, smallholder farmers have experienced low crop productivity, 

strained water resources, and an increased incidence of pests and disease (Bongole et al. 2020; Jones 

et al. 2023). In the future, a change in temperature by 2°C is projected to lower yields by 13%, 8.8% 

and 7.6% for maize, sorghum and paddy, respectively by 2050 (Rowhani et al. 2011). Severe impacts 

will be felt in Africa and Asia, coupled with yield declines that are expected to reach 7% in potential 

food-growing zones in 2030 (Townsend 2015). 

 

Farmers who are resource-poor suffer and are proportionately worse affected by climate change, 

given their low capacity for resilience (Amadu et al. 2020). It is expected that the situation will be 

worse for smallholder farmers who have no agricultural technological support (Jones et al. 2023). 

Without action, it is projected that climate change will add 2.6 million Tanzanians to the poverty pool 

by 2050, and 27% of the population and 29.4% of vulnerable societies have already experienced at 

least one climate change shock (World Bank Group 2024).  

 

Tanzania is vulnerable to climate risks due to the country’s reliance on rainfed agriculture and low 

crop productivity agriculture, urban-rural inequalities, unprecedented population increases (Jones et 

al. 2023), and limited infrastructure for energy, transport and digital connectivity (World Bank Group 

2024). Acute food insecurity is predominant, hitting 54.6% (64% and 84% for urban and rural areas, 

respectively) (World Bank Group 2024).  

 

To this end, the major challenge hinges on addressing the synergy and trade-offs between improving 

crop productivity, ensuring resilience to extreme climate change, and greenhouse gas mitigation. 

Planned CSA adoption enhances synergies and trade-offs between production, adaptation and 

mitigation (Ali & Erenstein 2017). A clear trade-off between these would address economic, 

environmental and social challenges for the effective, efficient and equitable functioning of food 

systems (Lipper & Zilberman 2018).  
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There are many initiatives to promote CSA as responses to climate change impacts and hazards (Akter 

et al. 2022; Jones et al. 2023). These range from policies and programmes to research that aim to 

improve adaptive strategies that support food security and income and strengthen resilience in the 

face of climate change variability. For instance, in Africa, CSA is included in the declarations of the 

African Union Malabo Declaration (Lipper et al. 2018; Daum et al. 2022), which sets out plans and 

targets to achieve productivity, ensure resilience and mitigate the effects of greenhouse gases in 

agricultural activities (URT 2017; Jones et al. 2023).  

 

In Tanzania in particular, the initiatives range from national-level to specific agencies that enforce 

national adaptation plans, nationally determined contributions, and major national investment (Jones 

et al. 2023). In addition, CSA is promoted by government institutions, national agricultural research 

institutions, nongovernmental organisations (NGOs), academic institutions, research organisations 

and development partners in varying capacities (Lamanna et al. 2016).  

 

The Tanzanian government has been actively promoting the adoption of CSA in its sectoral and multi-

sectoral policies. Examples include the CSA program 2015-2025, the Agriculture Climate Resilience 

Plan (ACRP), the Tanzania Agricultural Research Institute (TARI), Sokoine University of 

Agriculture (SUA), Ruvuma Commercialization and Diversification of Agriculture (RUCODIA), and 

in the district councils, along with the Agricultural Sector Development Plan II (ASDPII). These 

contain several CSA targets and plans to be achieved by the agricultural sector by 2030 (The Alliance 

for a Green Revolution in Africa (AGRA) 2015; URT 2015; Rioux et al. 2017; Lipper & Zilberman 

2018; Newell et al. 2019).  

 

International organisations working with the government of Tanzania to bring CSA practices into 

reality include the African Green Revolution Alliance (AGRA), the One Acre Fund, SNV-Tanzania, 

the African Conservation Tillage Network (ACTN) and the Consultative Group on International 

Agricultural Research (CGIAR), which works along with the United Nations – Food and Agriculture 

Organization (UN-FAO) around the globe (Jones et al. 2023). The ACRP and ASDPII are the largest 

government initiatives, and coordinate on a nationwide basis to promote CSA adoption among 

farmers so as to ensure food security, reduce poverty, enable farmer resilience and promote stable 

disaster management (Jones et al. 2023). Farmers are encouraged and supported in various ways to 

adopt appropriate CSA practices in a particular location, given the resources and timing of threatening 

climatic conditions.  

 

Technology is climate smart if it can enhance the attainment of either production, adaptation or 

mitigation. It can be traditional, innovative or imported (Khatri-Chhetri et al. 2016). A smallholder 

farmer is considered a CSA adopter if he/she implements CSA practices directly and indirectly 

following the initiatives promoting CSA adoption. A farmer must have used the technologies in 

farming for all land cultivated, whether with maize, paddy or beans. 

 

The CSA technologies promoted include elements that are knowledge- and skills-smart (timing of 

crop planting, improved seeds, credit/loans and farmers’ income, farm inputs and outputs, and 

education/training), weather-smart (technological advancement, crop agro-advisory, mobile phones, 

television (TV), radio and the internet), carbon-smart (integrated pest management and agroforestry), 

nutrient-smart (crop diversification, organic manure), energy-smart (minimum tillage and solar 

energy use), and water-smart (drip irrigation, channel (furrow) irrigation, bed planting, planting cover 

crops, rainwater harvesting and drainage management) (Khatri-Chhetri et al. 2016; Li et al. 2019; 

Bongole et al. 2022). 
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The adoption of CSA is voluntary and is generally low (some adopt and some do not adopt) (Lamanna 

et al. 2016; Mwongera et al. 2017; Bongole et al. 2022; Jones et al. 2023). Despite the various 

stakeholders’ ardent efforts, they have not won enthusiastic and general support for CSA from 

farmers. The sectoral-led state and development partners’ initiatives have not resulted in farmers’ 

wide application of CSA technologies. The low response to stakeholders’ promotion of CSA could 

arise from persistent factors that are unaddressed and their impact on farm performance.  

 

3. Methodology 

 

3.1 Data sources and variables 

 

This study uses secondary data from the Tanzanian National Sample Census of Agriculture (NSCA) 

of 2020 (National Bureau of Statistics [NBS] 2020). The sampling procedures adopted a framework 

for household-level surveys of Tanzania that involved a number of stages. In the first stage, the rural 

and urban enumerated areas (EAs) were selected as primary sampling units (PSUs) by sorting the 

regions and districts before implementing probability proportionate to size (PPS). The second stage 

involved selecting agricultural farming households from the EAs for data collection.  

 

The probability of a household being interviewed depended on the number of households in a 

particular EA, which were randomly selected. With respect to the sampling design, a total of 33 808 

households were sampled in this national survey. Data was collected using structured questionnaires.  

 

To avoid bias by the farmers in recalling the information/data, the survey was conducted immediately 

after the farming season. Reported financial information about income and off-farm income was also 

obtained by observing and recording the harvests in terms of kilograms and recording the harvest 

values reflecting the prevailing prices in the market.  

 

The data was further screened to obtain a dataset that would best fit our research questions and be 

good for comparison between adopters and non-adopters of CSA. During data cleaning, we 

considered only smallholder farmers who were involved in full-time agriculture, smallholder farmers 

who mainly produced maize, paddy or beans as staple food and for sale, smallholder farmers who 

had experienced climate change shocks such as drought in the past, and farmers who cultivated less 

than two hectares.  

 

We obtained a sample of 1 862 smallholder farmers who met the international standard that 

smallholder farmers are those who cultivate less than two hectares (Noltze et al. 2013; Rapsomanikis 

2015; Tanzania National Council for Financial Inclusion [TNCFI] 2017; Acclassato et al. 2021). The 

study focuses on smallholder farmers because they occupy a large segment of the farming population 

and produce a large share of food (Rapsomankikis 2015; Roop et al. 2023). 

 

The study adopted variables from the extant literature on CSA adoption. The outcome variables and 

the covariates are described, and the sources of each variable are provided in Table 1. The variables 

in this paper are consistent with past studies (Noltze et al. 2013; Lamanna et al. 2016; Amadu et al. 

2020B; Akter et al. 2022; Bongole 2022). Smallholder farmers’ CSA adoption status is a dummy 

variable, where 1 represents adopters and 0 non-adopters. The summary statistics and descriptions of 

the variables are contained in Table 1.  

 

Several variables are statistically significantly, indicating the difference between the two regimes, as 

in the cases in other studies (Abdulai 2016; Amadu et al. 2020a; Akter et al. 2022). The results give 
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an insight into the possibility of self-selection between the two groups, and the use of the ESR model 

is appropriate to address the possibility of selection bias. 

 

Table 1: Summary of the statistics 

Variables  Descriptions  Indicative references Adopter 
Non-

adopter 
Difference 

Outcome variables 

All crop outputs  
Total kg (maize, 

paddy, beans)  

(Mukasa et al. 2017; Amadu et al. 

2020b; Akter et al. 2022) 
2 872.785 1 227.633 

1 645.151*** 

(40.054) 

Maize 
Total kg 

(maize) 

(Lamanna et al. 2016; Akter et al. 

2022; Bouteska et al. 2024) 
2 285.789 1 053.469 

1 232.321*** 

(50.319) 

Paddy 
Total kg 

(paddy) 

(Noltze et al. 2013; Lamanna et 

al. 2016; Akter et al. 2022) 
2 710.396 1 229.222 

1 481.174*** 

(89.996) 

Beans  
Total Kg 

(Beans) 

(Lamanna et al. 2016; Siamabele 

2021; Akter et al. 2022; Bouteska 

et al. 2024) 

701.941 370.987 
330.954*** 

(60.822) 

Household income 

Total household 

income in 

Tanzanian 

shillings (TZS) 

(Noltze et al. 2013; Lamanna et 

al. 2016; Amadu et al. 2020a; 

Akter et al. 2022; Belay et al. 

2022) 

13.534 12.68 
.855*** 

(.043) 

Maize (income) 

Household 

income in TZS 

(maize) 

(Abdulai 2016; Akter et al. 2022) 12.923 12.108 .815***#(.044) 

Paddy (income) 

Household 

income in TZS 

(paddy) 

(Noltze et al. 2013; Akter et al. 

2022) 
13.610 12.773 

.837*** 

(.057) 

Beans (income) 

Household 

income in TZS 

(beans) 

(Bouteska et al. 2024) 14.197 13.824 
.374*** 

(.12) 

Agricultural inputs 

Herbicide  

If household 

uses herbicides: 

1 = used; 

0 = otherwise. 

(Noltze et al. 2013; Lamanna et 

al. 2016) 
0.169 .216 

-.048*** 

(.018) 

lnQnty_seedKg  
Quantity of 

seeds used in kg 

(Noltze et al. 2013; Lamanna et 

al. 2016) 
2.551 2.358 

.193*** 

(.038) 

LnTotlQtyFertilize

rMPB 

Total quantity 

of chemical 

fertilisers in kg 

(Noltze et al. 2013; Lamanna et 

al. 2016) 
1.605 .698 

.907*** 

(.088) 

LnLandSize  

Household’s 

total land in 

hectares 

(Noltze et al. 2013; Abdulai 2016; 

Akter et al. 2022) 
0.822 .618 

.205*** 

(.038) 

Manure 

If household 

used manure: 

1 = used; 

0 = otherwise 

(Lamanna et al. 2016) 0.649 .564 
.085*** 

(.022) 

Socioeconomics 

gender  

Sex of the 

farmer: 

1 = male; 

0 = female 

(Nyasimi et al. 2017; Akter et al. 

2022) 
0.736 .588 

.148*** 

(.022) 

age 

Age of the 

household head 

in years 

(Abdulai 2016; Akter et al. 2022) 46.819 50.597 
-3.777*** 

(.723) 

LnNumber_male  
Male adults in 

the household 
- 0.623 .532 

.09*** 

(.027) 

LnNumber_female 
Female adults in 

the household 
- 0.708 .666 .042 (.027) 
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Variables  Descriptions  Indicative references Adopter 
Non-

adopter 
Difference 

crop_failre 

Crop failure in 

the past season: 

1 = yes; 0 = no 

(Amadu et al. 2020b; Akter et al. 

2022) 
0.305 .349 

-.044** 

(.022) 

lnHhSize  
People in the 

household 

(Akter et al. 2022; Bongole et al. 

2022; Teklewold 2023) 
3.682 3.631 

.051 

(.044) 

Off_Fmincome 

Involved in paid 

off-farm 

activity: 

1 = yes; 0 = no 

(Tambo & Wünscher 2018; 

Amadu et al. 2020a; Akter et al. 

2022) 

0.450 .349 
.101*** 

(.022) 

lntotal Lvstok 

Total number of 

livestock as 

assets 

(Erekalo et al. 2024) 0.149 .107 
.043** 

(.02) 

Access status 

LnDstnce_Markt  
Distance to 

market (km) 

(Abdulai 2016; Akter et al. 2022; 

Belay et al. 2022) 
2.168 2.347 

-.177*** 

(.052) 

Institutional      

Crdit_accss  

Farmer received 

credit: 1 = yes; 

0 = no 

(Abdulai 2016; Marenya et al. 

2017; Rodríguez-Barillas et al. 

2024) 

0.057 .034 
.024** 

(.009) 

Biophysical status 

LnDstnce_Home 

Distance from 

house to farm 

(km)  

(Akter et al. 2022) 5.617 4.719 
.898** 

(.355) 

LnDstnce Road 

Distance from 

farm to road 

(km) 

(Kurgat et al. 2020) 1.126 1.174 
-.048 

(.042) 

Ivs 

Years_Educ 
Years of 

schooling 
(Abdulai 2016; Akter et al. 2022) 6.064 3.885 

2.179*** 

(.163) 

GrandC ostsMPB 
Total input 

costs 

(Noltze et al. 2013; Abdulai 2016; 

Lamanna et al. 2016) 
130 757.705 59 901.811 

70 855.894*** 

(5 499.123) 

Note: *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 

Source: National Sample Census of Agriculture (NSCA) (2020) of Tanzania (NBS 2020) 

 

3.2 Theoretical review and the conceptual framework  

 

The study was guided by the utility and production theories. Utility theory reveals individuals’ 

preferences. It is assumed to explain small farmers’ behaviour (Akter et al. 2022). It claims that choice 

is made based on maximum satisfactions attained (Fishburn 1970).  

 

Farmers’ satisfaction refers to the gains obtained from crop productivity and income. Small farmers’ 

CSA technology adoption is binary. A small farmer may decide to adopt or not to adopt. The decision 

is based on the satisfaction maximisation emanating from the impact of CSA technologies on crop 

productivity and income gains. The benefits for adopters is Y1i, in comparison with non-adopters, 

which is Y0i. Small farmer ith can opt to adopt CSA technologies if Y1i > Y0i and the net gain is U1i > 

0. Despite farmers’ preferences and CSA adoption being clear to farmers and researchers through 

observation, but the net benefits accrued by farmers are unobservable. 

 

Thus,  

 

U*1i = Y1i – Y01 > 0         (1) 
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Production theory describes crop productivity per hectare given agricultural inputs, and other factors 

(CSA technologies) at a particular level of technology (Førsund et al. 1980; Missiame et al. 2021). It 

demonstrates the technical combination of agricultural inputs and crop productivity, as well as the 

optimal crop productivity at a fixed level of inputs (Farrell 1957; Fried et al. 1993) so that variables 

affecting the productivity are realised (Meeusen & Van den Broeck 1977). It advances the Cobb-

Douglas production function in its first-order condition, which can be expressed as: 

 

Y1i = ALα1i Kα2i Qα3i,         (2) 

 

where Y1i is crop productivity per hectare, A is a constant term, L is labour employed (adult male and 

female farmers), K is capital (here of fertilisers, seeds, land), Q summarises biophysical factors 

(distance to farm) and other factors used in production (here of socio-economics and institutional), 

while α1i, α2i and α3i are estimated vector elasticities.  

 

CSA adoption improves productivity, farmer’ resilience, farm and crop management, and the 

delegation of farm tasks, and farmers engage in paid off-farm activities (Amadu et al. 2020a; Rasheed 

et al. 2020; Akter et al. 2022). Therefore, the impact of CSA technologies on crop productivity 

follows that net benefit in Equation (1) is determined by observable variables (biophysical, 

institutional and socioeconomical) and the unobservable factors, such as motivations or preferences 

affecting farmer’s decision, 𝜀_𝑖, such that 

 

U*I = ßXi + γGi + εi,         (3)  

 

where U*I is crop productivity of the ith smallholder household farmer, Xi is a vector of farm and 

socio-economic profiles (here of gender, age, education, household size, etc.), Gi is the CSA 

technology-adoption status of each ith farm household, ß and γ are coefficients to be estimated, and εi 

is the error term with zero mean and constant variance, δ2.  

 

Furthermore, smallholder farmers’ satisfaction is a function of observable factors (farm inputs, socio-

economic, biophysical and institutional) and unobservable (preference, inborn techniques, 

motivation, social network, management skills, experience or risks) (Abdulai 2016; Amadu et al. 

2020b; Akter et al. 2022).  

 

With respect to the influence and stress of climate change, farmers’ agricultural production decisions 

are claimed to be dependent. We assume that farmers are risk neutral. The insight into whether 

adopting CSA improves crop productivity and income after selling crops is the foundation of their 

decisions. CSA adoption enables greater plant uptake of nutrients and organic matter, prevents soil 

erosion, and ensures the use of improved seed (Jones et al. 2023), which augments crop productivity 

and income after the sale of the increased crop harvest (Noltze et al. 2013; Akter et al. 2022).  

 

We contribute to the existing literature by investigating the determinants of CSA adoption and the 

impact of CSA on crop productivity and income. We constructed the following hypotheses (see H1 

and H2) and the conceptual framework in Figure 1. They were composed on the basis of extant 

theoretical and empirical literature.  

 

H1: Socio-economic, farm input, biophysical and institutional factors affect CSA adoption, crop 

productivity and income. 

 

H2: CSA adopters achieve higher crop productivity and income than non-adopters.  
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Figure 1: The conceptual framework 

Source: Author  

 

3.3 Econometric model 

 

3.3.1 Decision to adopt CSA technologies  

 

Endogenous switching regression (ESR) has the power to account for endogenous factors due to 

selection bias in impact assessment (Shahzad & Abdulai 2020). This article estimates crop 

productivity (maize, paddy and beans) and income in Tanzania while accounting for the endogeneity 

of CSA and selection bias. ESR is an instrumental variable (IV) approach that clears endogeneity and 

selection bias, with no restriction as of the typical IV techniques (Coulibaly et al. 2017). The ESR 

model is a Heckman selection correction approach that treats the problem of selection bias as an 

omitted variable (Heckman 2013).  

 

The ESR model involves two dependent variables (adopters and non-adopters). In line with random 

utility maximisation theory, the study assumes that Tanzanian farmers are risk neutral, and they can 

choose to be either adopters or non-adopters, given the anticipated crop productivity and income.  

 

Thus, farmers’ decision-making to adopt CSA technologies depends on their perception of whether 

it will maximise gains or not. Net crop productivity and income are an unobservable (latent) variable, 

Λ𝑖∗, containing the differences between crop productivity and income for CSA adopters (𝛾1𝑖) and 

non-adopters (𝛾0𝑖) respectively. A rational 𝑖𝑡ℎ household will adopt CSA technologies if, and only if, 

the anticipated net benefits are high in Equation (1). It follows that: 

 

𝛬𝑖 ∗= 𝛾1𝑖 − 𝛾0𝑖 > 0,           (4) 

 

where Λ𝑖∗ is the function of observed variables such as farmer demographics, socio-economic status, 

and institutional and biophysical variables. The study models the decision to adopt CSA technologies 
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as part of unobservable knowledge, thus adopting the procedures of Amadu et al. (2020a) in Malawi 

and Akter et al. (2022) in Bangladesh, such that:  

 

𝛬𝑖 ∗= 𝛼𝛾𝑖 + 𝜇𝑖,           (5) 

 

where 𝛼 is a vector of parameters to be estimated; 𝛾𝑖 is a vector of independent variables; and 𝜇𝑖 is 
an error term (vector of unobserved factors affecting the adoption decision). 

 

We only observe the CSA adoption status, Λ𝑖 , as 

 

𝛬𝑖 =     1   𝑖𝑓 𝛬𝑖 ∗> 0, 
 

0 = 𝑖𝑓 𝛬𝑖 ∗ 

 

< 0,            (6) 

 

where 𝛬𝑖 is a binary variable, 1 indicates CSA adoption by ith farmer, and 0 if otherwise.  

 

3.3.2 Small farmer impact evaluation and selectivity bias 

 

Whether a farmer decides to adopt or not, the net benefits for crop productivity and income can be 

expressed as in Equation (7a) and Equation (7b) respectively, conditional on 𝛬𝑖:  
 

CSA adopters’ regime:  

 

𝛾1𝑖 =  𝜋1 × 1𝑖 +  𝜔1𝑖, 𝑖𝑓 𝛬𝑖 = 1                  (7a) 

 

Non-adopters’ regime:  

 

𝛾0𝑖 =  𝜋0 × 0𝑖 + 𝜔0𝑖, 𝑖𝑓 𝛬𝑖 = 0,                  (7b) 

 

where 𝛾1𝑖 and 𝛾0𝑖 are crop productivity or income corresponding to adopters and non-adopters of 

CSA for the ith smallholder farmer, respectively; 𝜋1 and 𝜋0 are vectors of the parameters to be 

estimated; × 1𝑖 and × 0𝑖 are vectors of variables influencing crop productivity and income for the ith 

smallholder farmer; and 𝜔0𝑖 and 𝜔1𝑖 are error terms. 

 

Vectors in × 𝑖 may overlap with vectors of determinants of 𝛾𝑖 (Amadu et al. 2020b; Akter et al. 

2022).  

 

Proper identification was achieved by making sure that at least some variables are excluded in 𝛾𝑖. 
Years of schooling and total agricultural input costs were the instrumental variables (IVs), and a test 

was conducted to confirm their validity as IVs. The IVs were statistically significantly correlated with 

the adoption of CSA technologies (0.029 and 0.0295 (p < 1%)), but not with smallholder farmer 

income (-0.0034 (p = 0.999)) and productivity (-0.0070 (p = 0.991). 

 

The random disturbance term, 𝜇𝑖, in Equation (5) and the 𝜔1𝑖 in Equation (7a) and 𝜔0𝑖 in Equation 

(7b) are assumed to be normally distributed with zero mean and a covariance matrix that is non-

singular (Fuglie & Bosch 1995), such that:  
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   𝜎𝑖
2       𝜎𝑖0      𝜎𝑖1 

𝐶𝑜𝑣(𝜇𝑖 , 𝜔0𝑖
, 𝜔1𝑖  ) =    𝜎𝑖0       𝜎0

2        𝜎10 ,      (8) 

   𝜎1𝑖      𝜎10       𝜎1
2  

 

where:  

 

𝜎10 = 𝑐𝑜𝑣 (𝜔1 . 𝜔0), 𝜎1𝑖 = 𝑐𝑜𝑣 (𝜔1. 𝜇𝑖) and 𝜎0𝑖 = 𝑐𝑜𝑣 (𝜔0. 𝜇𝑖) are covariances, respectively; 𝜎𝑖
2 =

𝑣𝑎𝑟 (𝜇𝑖), 𝜎0
2 = 𝑣𝑎𝑟 (𝜔0) and 𝜎1

2 =  𝑣𝑎𝑟 (𝜔1) are variances. Furthermore, 𝜎1
2, 𝜎0

2 and 𝜎𝜇
2 are 

variances that equal to one (Greene 2003) of the random terms, 𝜇𝑖, 𝜔0𝑖
 and 𝜔1𝑖, respectively.  

 

The adoption of CSA technologies is non-random. The unobservable variables (preference, inborn 

techniques, motivation, social network, management skills, experience or risks) are only realised by 

smallholder farmers, not by the researcher. The researcher observes the status reported by the farmers 

during the survey.  

 

In this context, there is potential selection bias emanating from the endogeneity of CSA adoption 

based on the non-random observed and unobserved features for self-selection into groups of adopters 

and non-adopters (Amadu et al. 2020b). If this scenarios holds it means that the group of adopters 

and non-adopters are systematically different (Issahaku & Abdulai 2019). Accordingly, the 

unobserved features in the outcome equations (7a) and (7b) are related to the random term in the 

selection Equation (5), and then the impact of CSA adoption on productivity and income are expected 

to be biased in its failure to address selection bias.  

 

The endogeneity and selection bias are addressed in the literature by applying the IV techniques or a 

generalised Heckman selection correction technique (Akter et al. 2022). We applied the same 

technique in the context of the omitted variable problem to account for selectivity bias and unobserved 

heterogeneity (Amadu et al. 2020a; Akter et al. 2022).  

 

In particular, the inverse Mills ratios or selection terms from the selection equation for the adopters 

and non-adopters are realised (Heckman 2001). The outcome variables, 𝛾0𝑖 and 𝛾1𝑖, are assumed not 

to be observed simultaneously, and then 𝜎10 is assumed to be equal to 0. Given the sample selection 

effects, the values of the error terms in equations (7a) and (7b) are non-zero due to a conditional on 

the selection criteria (Maddala 1986). Estimation using ordinary least squares (OLS) would result in 

a biased estimate of the outcome variables of 𝛾0𝑖 and 𝛾1𝑖 (Lee 1982). Thus, the error term in 

equations (7q) and (7b) – [𝜔1𝑖ǀ𝛬𝑖 = 1] and [𝜔0𝑖ǀ𝛬𝑖 = 0] – are condensed as: 

 

Ε[𝜔1𝑖
|Λi = 1] =  σ1μ

∅[αγi]

ϕ[αγi]
=  σ1μτ1i, and                 (9a) 

 

Ε[𝜔0𝑖
|Λi = 0] =  −σ0μ

∅[αγi]

1−ϕ[αγi]
=  σ0μτ0i,                  (9b) 

 

where:  

 

τ1i   =  
∅[αγi]

ϕ[αγi]
  and   τ0i  =

∅[αγi]

1−ϕ[αγi]
  are the standard normal probability density function (pdf), 

 

∅(. ) and ϕ(. ) are the standard normal cumulative distribution function (cdf), and 
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τ1i and τ0i constitute the inverse Mills ratios evaluated at αγ
i
. 

 

To determine the impact of CSA adoption on crop productivity and income, the study estimated the 

expected values for the actual (real data) and counterfactual scenarios. The average treatment effect 

on the treated (ATT) and untreated (ATU) was estimated for CSA adopters and non-adopters (for 

actual and their counterfactual scenarios), as follows:  

 

For CSA technology adopters (actual data/observed): 

 

Ε(𝛾1𝑖Adopter|Λi = 1) = α1A
×1i+ σ1μτ1i                 (10) 

 

For CSA adopters had they not adopted (counterfactual), or “what if they did not adopt”:  

 

Ε(𝛾1𝑖Non−adopters|Λi = 1) = α1N
×1i+ σ10τ1i                (11) 

 

For non-adopters of CSA technologies (real data/observed):  

 

Ε(𝛾1𝑖Non−adopters|Λi = 0) = α1N
×1i+ σ10τ10i                (12) 

 

For non-adopters had they adopted CSA (counterfactual), or “what if they adopted”: 

 

Ε(𝛾1𝑖𝐴dopters|Λi = 0) = α1A
×1i+ σ1μτ1i                 (13) 

 

Equations (10) to (13) have τ1i constant, meaning that the outcome variables estimation, ATT (change 

in productivity and income following CSA adoption) and ATU (change in productivity and income 

due to CSA non-adoption account for unobserved factors. The estimation of outcome variables 

depends only on observable factors. All the unobservable influences, (σ1μ − σ0μ) and (σ1μ − σ0μ), are 

cancelled out, as applied in the work of Abdulai and Huffman (2014), Amadu et al. (2020a) and Akter 

et al. 2022). This is obtained by Equation (11) minus Equation (12) and Equation (14) minus Equation 

(13). Equation (13) provides the change in crop productivity and income due to CSA adoption and 

non-adoption respectively.  

 

Thus, the “average treatment effect on the treated” (ATT) and untreated (ATU) are computed as: 

 

ATT = Ε(𝛾1𝑖Adopter|Λi = 1) − Ε(𝛾1𝑖Non−adopters|Λi = 1) = XiAdopter
(𝛼𝐴 − 𝛼𝑁) + τai(σ1μ − σ10)        (14) 

 

ATU = Ε(𝛾1𝑖Adopter|Λi = 0) − Ε(𝛾1𝑖Non−adopters|Λi = 0) = XiNon−adopter
(𝛼𝐴 − 𝛼𝑁) 

+τni(σ1μ − σ10)                     (15)

      

3.3.3 Controlling for bias affecting CSA technologies adoption  

 

The estimates of the effect of the adoption of CSA technologies on outcomes may bear bias emanating 

from three important sources: a) endogeneity of CSA technologies following the self-selection, b) 

bias emanating from the existence of the endogenous covariates that confound the effect, such as off-

farm income, and c) implementation bias from policy/promotion/emphasis. If the biases are ignored, 

the impact of the adoption of CSA technologies on outcomes may be biased.  
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The bias stemming from self-selection is addressed by applying the ESR model. The bias emanating 

from endogenous covariates, which are likely to influence the effect of the adoption of the CSA 

technologies on outcomes, is that the covariates are jointly determining the CSA adoption (Shahzad 

& Abdulai 2020) dealt with in this paper.  

 

In our case, the covariate confounding the impact of CSA on outcomes is off-farm income. The 

existence of scarce resources to enable smallholder farmers to adopt CSA and paid off-farm activities 

influences CSA adoption and eventually affects the outcomes, as found in previous studies (Amadu 

et al. 2020a; Akter et al. 2022).  

 

In our case, off-farm income similarly influenced the adoption of CSA. We applied the two-stage 

control function (CF) strategy to deal with endogenous covariates, as detailed in Amadu et al. 

(2020b), Akter et al. (2022), Issahaku and Abdulai (2019), and in Wooldridge (2015). In our context, 

the first stage used dummy off-farm income, with 1 if the farmer had engaged in paid activities other 

than agriculture, and 0 otherwise. This was regressed in conjunction with other independent variables 

in the outcomes. The second stage involved the choice equation of the ESR model, where residual 

variables from the first stage were included as independent variables. The residuals were statistically 

insignificant, and the endogenous covariates were realised (Wooldridge 2015).  

 

The study came up with a crucial way to fully satisfy the exclusion restriction, and this is depicted by 

the statistical insignificance and significance of the instrumental variables (IVs) in the outcomes (first 

stage) of the control function and the second stage (choice), respectively (see Table A in the Appendix 

for details). 

 

The bias due to policy/promotion/emphasis was addressed during the sampling when the NSCA 

survey was conducted. We were aware that the policy/promotion/emphasis on the use of CSA 

technologies in agriculture is for all farmers in their respective areas. The grouping of the participating 

and non-participating farmers, based on randomly collected data from the National Census Survey of 

Agriculture (NCSA) (NBS 2020), is different from that found elsewhere – in Malawi by Amadu et 

al. (2020b) and in Bangladesh by Akter et al. (2022). 

 

The approach used in this study reflects that used by Abdulai (2016) in Zambia, thus we obtained the 

adopters and non-adopters from the entire population of farmers in Tanzania, making sure that the 

sample selection really represented the true population. In this context, the adopters and non-adopters 

live in the same localities in all sampled areas, and had the same characteristics to realise the impact 

of CSA.  

 

There are no naturally existing control and treated groups as a unique intervention programme 

requirement, as in the works of Amadu et al. (2020a) and Akter et al. (2022), which have adopter and 

non-adopter villages participating in a programme. Hence, this implies that the policy/promotion/ 

emphasis of the adoption of CSA technologies by all farmers and the random sampling of all farmers 

means that the adopters and non-adopters share similar observable characteristics, which possibly 

reduces the endogeneity and selection that are likely to originate from various programmes that 

emphasise the application of CSA technologies by farmers. The sampling strategy therefore enables 

us to estimate the model by assigning 1 to adopters, and 0 otherwise.  
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4. Empirical results and discussion  

 

4.1 Factors influencing CSA adoption 

 

The results of the endogenous switching regression (ESR) are summarised in Table 2. The estimation 

from the first stage depicts that the determinants of the adoption of climate smart agriculture (CSA) 

range from the availability and usage of agricultural input, socio-economic factors and access factors. 

Chemical fertilisers, land size, number of women, distance to the market and years of education are 

important factors. Distance to the market negatively influences CSA adoption. Access to the market 

enables farmers to access other farm inputs and knowledge about farming (Mwalupaso et al. 2020; 

Akter et al. 2022). The farmers living far from the market are less likely to adopt CSA technologies. 

 

Land size plays a big role in influencing the use of CSA technologies. Farmers feel that, without the 

adoption of CSA technologies, land alone cannot improve productivity in the face of climate change 

variations. Land size increases the propensity to adapt CSA practices and is consistent with a study 

in Bangladesh that found that land is positively related to CSA adoption (Akter et al. 2022).  

 

In the African context, especially in rural areas, women are a considerable source of farming labour. 

The number of adult women in a household is largely associated with CSA adoption. Farmers who 

frequently are involved in agriculture for their livelihoods and income are more likely to adopt CSA 

technologies. These results are similar to the findings of Teklewold et al. (2020) that women involved 

in agriculture are likely to adopt CSA and frequently do so.  

 

The instrument (years of schooling) in CSA for the criterion function is positive and statistically 

significant. The education of a household head influences CSA adoption due to knowledge and 

awareness of the effects or threats of climate change on soil fertility, and the propensity to adapt 

depends on awareness of the severity of the climatic shocks, resources availability and other coping 

strategies.  

 

Issues relating to education suggest that CSA adoption is confined by a lack of awareness of the broad 

goals of CSA, which include creating awareness about the importance of counteracting climate 

change threats (FAO 2017b). Education or training programmes increase awareness and adoption of 

CSA. Education is revealed to be crucial for acquiring new knowledge, skills and technologies for 

the improvement of crop productivity. The same observations were made in Zambia by Abdulai 

(2016).  

 

Furthermore, the off-farm income residual is negatively and statistically insignificant, implying that 

estimates of the endogenous variables are bias-free. We employed the ESR model, the second stage 

of which specifies the production function, where part of the diagnostic test confirms that the model 

fits the data. Furthermore, heterogeneity is confirmed in Table 2 below, and shows that, if not dealt 

with, it would alter the results to be incorrect. This validation confirms the use of ESR as a better 

method of identification compared to other methods.  
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Table 2: Estimation results of the endogenous switching regression (ESR) model 
Determinants of CSA adoption Second-stage estimation of the ESR 

Variables 
Coefficient estimates 

(standard errors) 

Adopters’ coefficient 

estimates (standard errors) 

Non-adopters’ coefficient 

estimates (standard errors) 

Constant -1.550* (0.820) 3369.758*** (344.500) 1 310.487*** (177.341) 

Agricultural inputs 

Herbicide  -0.175 (0.106) -124.989 (83.876) -127.454** (61.197) 

lnQnty_seedKg  0.018 (0.053) -33.395 (44.338) 14.651 (32.428) 

LnTotlQtyFertilizerMPB 0.100*** (0.032) 34.755 (21.627) 29.209* (17.251) 

GrandCostsMPB 0.000 (0.000) 0.001*** (0.000) 0.001** (0.000) 

LnLandSize  0.115** (0.057) -175.569*** (38.407) -121.423*** (33.720) 

Manure 0.112 (0.092) -45.066 (72.596) 28.049 (52.131) 

Socioeconomics 

gender  0.095 (0.110) 158.749* (83.761) 20.315 (56.559) 

age 0.005 (0.007) -1.271 (2.295) -3.313** (1.611) 

LnNumber_male  0.039 (0.058) -58.113 (56.994) -38.923 (45.158) 

LnNumber_female 0.035* (0.055) 1.088 (54.228) -72.331* (43.273) 

crop_failre -0.040 (0.067) 15.264 (68.565) 17.168 (50.804) 

lnHhSize  0.040 (0.034) -76.912** (32.232) -11.008 (24.784) 

Off_Fmincome 1.406 (1.477) -84.159 (66.337) 33.677 (51.718) 

Access status 

LnDstnce_Markt  -0.082*** (0.029) -45.316 (31.222) 45.324** (21.594) 

Institutional 

Crdit_accss  0.222 (0.153) 172.811 (135.499) -28.491 (133.729) 

Biophysical status 

LnDstnce_Home 0.002 (0.006) 1.540 (3.766) 14.662*** (3.594) 

Ivs 

Years_Educ 0.055** (0.026)   

Off_fmincomeResdl -1.337 (1.478)   

Statistical diagnostics 

LR test of independent 

equations: chi2(1) 
0.22   

Prob > chi2 0.6407   

Log likelihood -16 210.56   

sigma_1  931.226*** (22.023)  

sigma_2   720.842*** (17.385) 

rho_1  -0.034 (0.250)  

rho_2   0.074 (0.151) 

N 1 857 1 857  

Note: *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 

Source: NBS 2020 

 

Regimes one and two appear in the third and fourth columns of Table 2, respectively. The cost of 

input is positive and statistically significant, influencing crop productivity. The relatively low cost 

improves productivity by improving the uptakes of important agricultural inputs for both adopters 

and non-adopters of CSA technologies. Input uptake or usage greatly influences involvement in 

agricultural activities and productivity. The relatively low cost of agricultural inputs allows farmers 

to use more inputs and improve productivity (Noltze et al. 2013).  

 

Furthermore, land and household size are negatively and statistically significant. Land is related to 

productivity, implying that it is not the only factor increasing productivity. Land is a significant input, 

but must be combined with other inputs. Inputs such as chemical fertilisers improve the quality of 

soil and fertility, leading to increased productivity. Large family size contributes negatively to crop 

productivity.  
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Herbicides, quantity of seeds and manure negatively influence the productivity of adopters, implying 

that CSA technologies are crucial for the improvement of productivity. In terms of agricultural inputs, 

productivity cannot be improved in isolation from CSA. An insight from the findings is that CSA 

technologies improve crop productivity, that herbicides are not appropriate for all soil conditions, and 

that large families decrease productivity, as also found in the work of Akter et al. (2022).  

 

Total chemical fertilisers were positively related to productivity for non-adopters, implying that for 

farmers who did not adopt CSA technologies, chemical fertilisers were important to them. Fertilisers 

improved soil quality and fertility, which eventually improve crop productivity. Lamanna et al. 

(2016) also found that chemical fertilisers are crucial for soil nutrients, which improve crop 

productivity.  

 

Gender is an important determinant of crop productivity. Being a man increases the probability of 

being productive, as agriculture requires physical fitness and resources to adopt CSA. The same 

findings were obtained by Teklewold et al. (2020) in Tanzania. Age was negative and statistically 

significant in its contributing to the productivity of non-adopters. This may imply that non-adopters 

become less active in adopting new farming technologies, and also less active physically, which leads 

to a decline in crop productivity. In this regard, elders are less productive compared to other age 

groups (Akter et al. 2022). Also, female adults are negatively and statistically related to crop 

productivity for non-adopters, implying that being involved in agriculture without CSA adoption 

reduces productivity. CSA technologies, if accompanied by other production inputs, such as physical 

fitness, may augment crop productivity.  

 

Distance between the market and home is positively and statistically significant in the influence of 

crop productivity for non-adopters. The market is a place for the acquisition of knowledge, advice, 

inputs and other social benefits that improve crop productivity. These findings are similar to those of 

Akter et al. (2022), who found that market and physical characteristics greatly influence crop 

productivity. 

 

4.2 Influence of CSA on crop productivity 

 

On count, the productivity effect indicates that smallholder farmers benefit from CSA adoption. In 

Table 3, the third and fourth columns represent the factual and counterfactual for both regime 

functions, respectively. The first row has aggregate crop productivity in factual mean from regime 

one function, which is 2 873.614 kg, but their counterfactual mean is 2 835.665 kg. The difference, 

which is the ATT, shows an increase of 1.34% in productivity.  

 

Referring to the second row, the factual for non-adopters is 1 226.304 kg, but if had they adopted 

their productivity would be 1 393.722 kg, giving an ATU of 13.65%. The findings reveal that the 

ATT is positively consistent with the findings of Amadu et al. (2020b) in Malawi and Akter et al. 

(2022) in Bangladesh. Furthermore, crop productivity indicates that adopters on average gain 

relatively more than non-adopters. However, adopters gain more in beans, at 86.6%, for the factual 

compared to their counterfactual.  
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Table 3: Productivity effects 
Grain type Effect CSA technologies Diff (SE) % change 

  Mean (adopters) Mean (non-adopters)   

Aggregated 

productivity (kg) 

ATT 2 873.614 2 835.665 
37.949*** 

(11.143) 
1.34 

ATU 1 393.722 1 226.304 
167.418*** 

(10.407) 
13.65 

Maize (kg) 

ATT 2 286.052 2 158.344 
127.708*** 

(16.861) 
5.92 

ATU 1 252.439 1 053.703 
198.736*** 

(11.737) 
18.86 

Paddy (kg) 

ATT 2 710.396 2 525.928 
184.468*** 

(24.929) 
7.30 

ATU 1 639.13 1 233.064 
406.066*** 

(26.181) 
32.93 

Beans (kg) 

ATT 702.129 374.272 
327.857*** 

(37.281) 
86.60 

ATU 381.028 370.98 
10.048*** 

(13.895) 
2.71 

Notes: *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively; SE = standard error. 

Source: NBS 2020 

 

With regard to applying endogenous switching regression to income, the regression results for the 

first and second stages are presented in Table 4. From the first stage, it can be seen that the cost of 

input, gender, distance between the market and home, education, and the off-income residual are 

negatively and statistically significantly related to CSA adoption. Distance between the market and 

home in Table 2 is consistent with the results in Table 4, and has already been discussed. 

 

Table 4: Endogenous switching regression (ESR) results for income  
First-stage estimation of ESR Second-stage estimation of ESR 

Variables Coef. estimates 

(standard errors) 

Adopters’ coef. estimates 

(standard errors) 

Non-adopters’ coef. 

estimates (standard errors) 

Constant -4.313 

(0.458) 

12.904*** 

(0.178) 

12.945*** 

(0.243) 

Agricultural inputs 

GrandCostsMPB  -1.67e-06*** 

(5.01e-07) 

3.08e-06*** 

(2.24e-07) 

3.95e-06***  

(4.78e-07) 

LnTotlQtyFertilizerMPB  0.198*** 

(0.023) 

-0.018 

(0.014) 

0.023 

(0.025) 

LnLandSize  0.258*** 

(0.044) 

0.196*** 

(0.029) 

0.180*** 

(0.049) 

Socioeconomics 

gender  -0.146* 

(0.081) 

0.170*** 

(0.058) 

0.236*** 

(0.085) 

age 0.029*** 

(0.004) 

-0.005*** 

(0.002) 

-0.007*** 

(0.002) 

LnNumber_male  0.017 

(0.056) 

0.075* 

(0.044) 

-0.017 

(0.069) 

LnNumber_female  0.042 

(0.054) 

0.043 

(0.042) 

0.187*** 

(0.066) 

lnHhSize  0.083*** 

(0.032) 

-0.035 

(0.025) 

0.028 

(0.038) 

Off_Fmincome 6.979*** 

(0.773) 

-0.046 

(0.050) 

0.059 

(0.078) 

lntotal_Lvstok  0.057 

(0.071) 

0.037 

(0.052) 

0.143 

(0.094) 
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First-stage estimation of ESR Second-stage estimation of ESR 

Variables Coef. estimates 

(standard errors) 

Adopters’ coef. estimates 

(standard errors) 

Non-adopters’ coef. 

estimates (standard errors) 

Access status 

LnDstnce_Markt  -0.061** 

(0.028) 

-0.016 

(0.023) 

-0.002 

(0.034) 

LnDstnce_Road  0.098** 

(0.038) 

-0.041 

(0.030) 

-0.078** 

(0.041) 

Institutional 

Crdit_accss  0.256* 

(0.150) 

-0.022 

(0.106) 

0.078 

(0.200) 

Biophysical status 

LnDstnce_Home -0.015*** 

(0.005) 

-0.001 

(0.003) 

0.013** 

(0.005) 

Ivs 

Years_Educ  -0.060*** 

(0.016) 

  

Off_fmincomeResdl  -6.921*** 

(0.774) 

  

Statistical diagnostics 

LR test of indep. eqns.: chi2(1) 43.51   

Prob > chi2  0.0000   

Log likelihood -3 380.5912   

sigma_1  0.777*** 

(0.033) 

 

sigma_2   1.214*** 

(0.050) 

rho_1  0.683*** 

(0.065) 

 

rho_2   0.751*** 

(0.047) 

N 1 860 1 860 1 860 

Note: *, ** and *** indicate significance at the 10%, 5% and 1% level, respectively. 

Source: NBS 2020 

 

4.3 Income impact of CSA 

 

The results from the second stage of ESR are reported in Table 4. The determinants of smallholder 

farmers’ income of regimes one and two are summarised in the third and fourth columns, respectively. 

Factors such as land size and gender (being a man) are crucial, as they increase income. More land 

may increase income. Also, being a man is related to high income due to the advantages of physical 

fitness and resources they possess. Farmers with more land can cultivate and rent the land to other 

farmers, which increases their income. These findings are consistent with the findings of Akter et al. 

(2022) in Bangladesh.  

 

For the adopters of CSA technologies, land size, costs of input, age and number of adult men are 

crucial determinants of income, while for non-adopters, factors such as distance between the market 

and home and number of adult women influence their income. 

 

The differences in the determinants justify the use of ESR. Interestingly, age reduces the productivity 

and income of the household, implying that a unit increase in age reduces the income of the household 

because of usual farming habits being used from experience. The higher the age, the less the ability 

to produce or generate income; the elderly are less energetic, and low in the acquisition of new 

farming knowledge or technologies, and this makes them unproductive compared to the young. The 

findings are in line with those of Noltze et al. (2013) in Timor Leste. 
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Considering the ATT and ATU of the income effect of CSA presented in Table 5, the results reveal 

that the impact of CSA technologies is varied. For income from aggregate crops, the factual increased 

income by about 8.31%, whereas the counterfactual (had they adopted CSA) would have increased 

their income by 13.55%. Interestingly, for individual crops, CSA adopters on average gain relatively 

more income than their counterfactuals; adopters of CSA for beans receive about 14.31% more 

income, followed by a gain in income from maize of 8.74%.  

 

The results suggest that, for non-adopters, ATU shows that they would have gained more income if 

they had adopted. For instance, if non-adopters had adopted maize, they would have increased their 

income by 13.81%. The findings are consistent with other findings, such as those of Amadu et al. 

(2020a) in Malawi, of Belay et al. (2022) in Ethiopia, and of Noltze et al. (2013) in Timor Leste 

 

Table 5: Income effects  
Grain type Effect CSA technologies Diff (SE) % Change 

  Mean (adopters) Mean (non-adopters)   

Total income 

ATT 13.542 12.503 
1.039*** 

(.017) 
8.31 

ATU 14.384 12.667 
1.717*** 

(.022) 
13.55 

Maize income 

ATT 12.949 11.908 
1.041*** 

(.0248) 
8.74 

ATU 13.763 12.093 
1.670*** 

(.029) 
13.81 

Paddy income 

ATT 13.609 13.438 
.171*** 

(.04) 
1.27 

ATU 12.999 12.775 
.224*** 

(.044) 
1.75 

Beans income  

ATT 14.226 12.445 
1.781*** 

(.098) 
14.31 

ATU 15.086 13.782 
1.304*** 

(.087) 
9.46 

Notes: *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively; SE = standard error. 

Source: NBS 2020 

 

To validate the PSM results, we undertook a robustness check by comparing the results of matching 

before matching, which is crucial (see Figure 2) for both the income and productivity models. It is 

important to make sure that the observable statuses are comparable and that bias is reduced (Caliendo 

& Kopeinig 2008).  
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Figure 2: Before and after matching both productivity and income 

Source: NBS 2020 

 

As part of the robustness check we find consistent results for both productivity and income models 

using PSM in Table 6. 

 

Table 6. PSM results for Productivity and Income effects 
Effect Variable sample Treated Controls Difference SE T-stat. 

Productivity Grain productivity unmatched 2 873.616 1 226.309 1 647.307*** 40.108 41.07 

ATT 2 873.616 1 333.52 1 540.096*** 78.615 19.59 

Income Household income unmatched 13.535 12.679 .856*** .043 19.81 

ATT 13.535 13.066 .469*** .109 4.32 

Notes: *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively 

Source: NBS 2020 

 

4.4 Limitations of the study 

 

We applied a robust identification strategy and have presented the crucial results. However, the study 

faces some limitations. The major limitation may emanate from the type of data used. We employed 

cross-section data, which fails to capture the time-variant effects, such as weather data.  

 

5. Conclusion and policy implications 

 

This study has examined the determinants of CSA adoption and its impacts on farm performance and 

income. We controlled for any potential biases that might have affected the estimates, such as 

endogenous variables and selection.  

 

The results of the determinants reveal that land size, education, chemical fertilisers, adult women, 

credit access, off-farm income and distance between the market and the farm are crucial for explaining 

CSA adoption, crop productivity and income. To have a sustainable scale-up of the integration of 

CSA technologies into agriculture, the findings highlight that stakeholders should promote CSA 

through campaigns, workshops, education provision through extension officers, credit provision, and 

friendly procedures for the acquisition of farming land. 
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The results furthermore indicate that the conscious adoption of CSA technologies affects crop 

production and income. Non-adopters, if they had adopted, would have significantly increased their 

productivity and income.  

 

The government, in collaboration with other development partners and stakeholders in agricultural 

transformation, could reinforce the adoption of CSA technologies based on the evidence in this study 

and other studies, which show that CSA adoption improves farm performance and income. 

 

Generally, the results on the determinants and effects of CSA adoption have both policy and academic 

implications. First, the findings help in answering the question of how we can scale up the use of 

CSA to be able to achieve production, adaptation and mitigation. Second, the effects of CSA adoption 

on crop productivity and income help to answer questions on how we can boost productivity and 

income for food security and poverty reduction, eventually increasing farmers’ resilience in the face 

of adverse climatic conditions. Lastly, the study adds knowledge to the extant literature about the 

determinants and impact of CSA adoption on farm performance and income. 
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Appendix  

 

Table A: First stage regression controlling for endogeneity in CSA adoption  

Variables 

CSA adoption selection/choice equation Endogenous variable: Off-farm income 

Model 1: For productivity Model 2: For income 
Logit regression associated with 

Model 1 

Logit regression associated 

with Model 2 

 Coef. SE Coef. SE Coef. SE Coef. SE 

Constant 1 094.439 686.533 16.471*** .327 -.658* .362 -.569* .328 

Agricultural inputs 

LnLandSize -75.233 47.415 -.013 .03 .138** .065 .154** .063 

LnTotlQtyFertilizerMPB 102.21*** 26.26 -.14*** .016 .144*** .031 .138*** .031 

GrandCostsMPB .001 .001 6.40e-06***  3.43e-07 4.10e-06***   6.32e-07 4.04e-06*** 5.78e-07 

Herbicide -254.573*** 88.608   -.159 .132   

lnQnty_seedKg 31.165 43.963   -.022 .069   

Manure 27.4 76.491   .351*** .106   

Socioeconomics 

gender 108.394 92.075 .488*** .057 .454*** .116 .459*** .115 

age 3.573 5.939 -.036*** .003 -.009** .003 -.009** .003 

lnHhSize -16.125 28.462 -.059*** .022 .048 .052 .055 .052 

crop_failre -8.165 56.332   -.049 .108   

LnNumber_male -33.928 48.172 .016 .038 .056 .094 .031 .093 

LnNumber_female -10.456 45.958 .084** .037 .035 .089 .023 .089 

Off_Fmincome 1 406.843 1 234.943 -6.942*** .557     

Access status 

LnDstnce_Markt -43.864* 24.058 -.01 .019 -.141*** .046 -.133*** .047 

LnDstnce_Road   -.17*** .026   -.029 .059 

Institutional/Wealth 

Crdit_accss 231.537* 125.011 -.021 .099 .283 .247 .268 .247 

lntotal_Lvstok   .043 .048   .099 .118 

Biophysical status         

LnDstnce_Home 5.003 4.596 .025*** .003 .01 .007 .011 .007 

IVs 

Years_Educ 18.902 21.142 .128*** .011     

Off_fmincomeResdlPctn -1 396.632 1 236.173 6.956*** .558 .191* .105 .211** .105 

Statistical diagnostics 

Pseudo r-squared      0.106  0.101  

Chi-square     272.883  259.437  
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Prob > chi2     0.000  0.000  

N 1 857  1 860  1 857  1 860  

Notes: *, ** and *** represent significance at the 10%, 5% and 1% levels, respectively; Coef. = coefficient; SE = standard error 

Source: NBS 2020 

 


