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Abstract  

 

This study examined the effect of sustainable intensification (SI) technologies, specifically the use of 
improved maize seed varieties, of improved bean seed varieties (Nua45), crop rotation, maize-legume 

intercropping and doubled-up legume systems on farm income in Dedza district, Malawi. A 

Multistage sampling method was applied to sample 330 smallholder farmers. The propensity score 

matching (PSM) method was used to assess the causal effect of SI adoption on farm income. The 

results from the PSM analysis reveal that adoption of SI practices increased farm income by 

MWK 35 424.32 (US$ 48.45) per 0.57 hectares in 2020. Based on the findings, the study recommends 

increased investment in agricultural extension services through the recruitment and training of more 

extension officers in rural areas to enhance farmers’ access to timely and practical knowledge of SI 

technologies. In addition, the development and scaling-up of affordable credit schemes, such as input 

loans and microfinance packages tailored to smallholders, are essential to facilitate the uptake of 

improved seed and other SI-related inputs. Lastly, strengthening market linkages through the 

promotion of farmer cooperatives and contract farming arrangements is key to ensure access to 

quality inputs at fair prices and to secure reliable markets for produce.  

  

Key words: sustainable intensification, climate change, impact, PSM, livelihoods 

 

  

mailto:isaacmavikoh@gmail.com
mailto:charlesjumbe@yahoo.com
mailto:kmachila30@gmail.com
https://doi.org/10.53936/afjare.2025.20(2).12


AfJARE Vol 20 No 2 (2025) pp 207–219  Maviko et al.  

 
 

208 

1. Introduction  

 

Climate change poses a significant threat to Malawi’s agriculture sector, which remains the 

cornerstone of the national economy and a primary source of income and food security for rural 

households (Government of Malawi [GoM], 2024). Despite its central role, agricultural productivity 

faces significant challenges due to climate and weather variability, declining soil fertility and limited 

access to modern technologies. Smallholder farmers, who constitute the majority of the agricultural 

workforce, are particularly vulnerable to the challenges, which threaten livelihoods and reduce their 

ability to sustain agricultural output. Most farmers cultivate on small plots of less than one hectare, 

rely on rain-fed agriculture and have limited access to quality inputs, extension services, credit 

facilities and reliable markets. The constraints have contributed to a persistent decline in agricultural 

productivity, with far-reaching socio-economic consequences, most notably among them rising 

poverty levels. According to the World Bank Poverty Assessment report of 2022, 51.7% of 

Malawians live below the poverty line of MWK 137 428.00 (US$ 187.96) per person per year (GoM 

2017; World Bank 2022). The figure underscores the adverse effects of agricultural inefficiencies on 

household income and national development. 

 

The pathway out of poverty trap in Malawi relies largely on the performance of the agricultural sector, 

since agriculture is the predominant sector underpinning the livelihoods of poor households in rural 

areas (GoM 2024). Thus, increasing agricultural productivity is key to getting more people out of 

poverty. Agricultural productivity cannot be achieved without adopting productivity-enhancing 

technologies. This is due to the fact that it is no longer possible to meet the needs of an increased 

population by expanding land under crop production. Therefore, the promotion of agricultural 

practices that boost production is an important strategy to reduce poverty levels and meet food 

demand with minimal disturbance of the natural resources. 

 

In this regard, improved agricultural technologies that best fit smallholder farmers are needed to the 

enhance income and food security of small-scale farmers. The adoption and intensive use of 

sustainable intensification (SI) technologies are therefore regarded as a means to enhance farm 

income, as well as ecosystem services in agro-based economies (Martey et al. 2021; Vatsa et al. 

2023). Sustainable intensification is defined as the process of increasing agricultural productivity 

from existing farmland, while minimising pressure on the environment and enhancing the use of 

natural resources and ecosystem services (Pretty & Bharucha, 2014). The approach emphasises the 

efficient use of natural, human and economic resources to achieve productivity gains without 

expanding cultivated land or degrading the environment. Key SI technologies promoted among 

smallholder farmers include crop rotation, intercropping, conservation agriculture, use of improved 

seed varieties, biological fixation of nitrogen and pest and disease control.  

 

The practices have been recommended extensively by various stakeholders to deal with the problems 

that arise as a result of the over-use of irrigation and chemical fertiliser, which increase the cost of 

production on the farm (Asante et al. 2024). Some of the technologies have the potential to improve 

residue retention and, to a certain extent, increase crop biodiversity, reduce soil disturbance and 

provide the extra benefit of improving the fertility of the soil and crop production (Shani et al. 2024). 

Several studies have recommended the use of SI technologies to achieve both increased agricultural 

productivity and environment protection by improving the fertility of the soil and increasing farm 

yield on the same piece of land with minimal pressure on natural resources (Gebre et al. 2021; Xie & 

Haung 2021).  

 

In an effort to improve the income of farmers from agricultural production, Lilongwe University of 

Agriculture and Natural Resources (LUANAR), with financial support from the United States Agency 
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for International Development (USAID), has been promoting yield-enhancing practices since 2016 

with the aim of improving the welfare of rural households. Research has shown that the adoption of 

such technologies ensures efficient use of resources, especially for resource-constrained farmers who 

cannot manage to purchase inorganic or chemical fertiliser. In addition, the technologies help to 

reduce the high risk of financial losses associated with drought-induced crop failure (Kotu et al. 2017; 

Biru et al. 2019). However, little research has been conducted to assess the effect of adopting such 

production-enhancing technologies on farm income in Malawi.  

 

Although some studies elsewhere have linked the adoption of SI technologies to improvements in the 

livelihoods of farmers, including household income, many of these studies have focused 

predominately on individual technologies in isolation (Manda et al. 2018; Martey et al. 2021). 

However, in practice, smallholder farmers often adopt a combination of SI technologies 

simultaneously to address complex production challenges, including climate change variability and 

unexpected shocks (Asante et al. 2024). Aseres et al. (2019) argue that evaluating the impact of a 

single technology yields biased or incomplete estimates of welfare outcomes, given the 

complementary and interactive effects of multiple practices.  

 

Despite the growing promotion of newly introduced technologies, such as the doubled-up legume 

system, there remains limited empirical evidence of the combined effect of such SI technologies on 

household income, particularly in the Malawian context. Furthermore, much of the existing research 

has focused on broader outcomes, such as food security and poverty reduction, with a predominant 

emphasis on maize production (Takahashi et al. 2019). 

 

This study was therefore designed to address these knowledge gaps by investigating the aggregate 

effect of adopting multiple SI practices, including doubled-up legume technology, bean improved 

seed (Nua45) crop rotation, maize hybrid seed and intercropping on farm income in Dedza district, 

Malawi. In doing so, it contributes to the empirical literature by providing a more holistic 

understanding of how resource-constrained farmers adopt integrated strategies to improve 

productivity and income. By applying the propensity score matching (PSM) approach, the study 

controls for selection bias and estimates the net effect of SI adoption, thereby yielding more reliable 

and policy-relevant findings. In addition, by generating context-specific evidence from Malawi, 

where data on income effects of bundled SI practices remains scarce, this study offers valuable 

insights to inform the design and implementation of agricultural policies and interventions aligned 

with national development priorities, such as the National Agriculture Policy and Malawi Vision 

2063. 

 

2. Methodology of the study 

 

2.1 Theory of random utility  
 

The adoption of SI practices can be analysed through the lens of random utility theory, as illustrated 

in the conceptual framework presented in Figure 1. Perception, attitude and knowledge are key factors 

that influence the decision-making process. Farmers are likely to adopt SI practices if they perceive 

the benefits, such as increased yields, cost savings and environmental sustainability, as outweighing 

the associated costs and risks (Ahmed et al. 2017). According to utility maximisation theory, farmers 

adopt SI practices when the expected utility (benefits) exceeds the cost within the constraints they 

face, such as financial resources.  

 

In this regard, a farmer is exposed to a number of SI practices (crop rotation, maize-legume 

intercropping, improved bean varieties, drought-resistant varieties and doubled-up legume systems) 
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from which he/she must adopt based on perceived benefits. A farmer makes the choices at random 

and in any combination. For a given farmer, the probability of choosing a given SI practice is affected 

by the choices made on any of the other practices. Therefore, farmer i, from a given number of N 

households chooses SI practices denoted by j = 1, 2,3,4,5, where 1, 2, 3, 4, 5 are the choices of SI 

practices, namely hybrid maize seed, intercropping, crop rotation, doubled-up legumes and Nua45.  

 

Farmer i attains utility level Uij from any combination of the SI practices chosen. However, choices 

made are discrete, such that a farmer selects or chooses a combination of SI technologies that 

maximise utility (i.e. give the highest output), such that Uij > Uik. Thus, ceteris paribus, the utility 

derived from a given practice j yields more utility than practice k. However, the utility derived by the 

farmer is not observable, but the observable attributes associated with it can be decomposed into 

deterministic (Vij) and random (εij) parts (Train 1998). Mathematically, this can be expressed as 

follows:  

 

𝑈𝑖𝑗 = 𝑉𝑖𝑗 + 𝜀𝑖𝑗 , ∀𝑗 = 1, 2, … … . ,5         (1) 

 

In the above equation, Vij = δjXij represents the utility; parameter Xij denotes a vector of observable 

variables; δj denotes a vector of parameters that are not known; and εij denotes unobserved variables 

that affect the utility attained. Since εij is not observed, it is difficult to exactly predict the farmer’s 

choice, but the likelihood of any particular outcome can be derived. 

 

2.2 Conceptual framework 

 

In this study, a conceptual framework was developed to illustrate the relationship between the 

adoption of sustainable intensification (SI) practices and farm income (Figure 1). The framework 

draws upon Rogers’ diffusion of innovations theory (Rogers 2003), which explains how, why and at 

what rate new ideas and technologies spread within a social system. According to this theory, 

technology adoption follows a process that begins with awareness, followed by interest, evaluation, 

trial and eventual adoption. However, not all farmers are equally positioned within this process. In 

contrast to the assumption that all rural farmers are aware of new technologies, Rogers’ model 

recognises the existence of adopter categories – from innovators and early adopters to laggards – thus 

highlighting the variability in access to information and readiness to adopt. 

 

In the Malawian context, new agricultural technologies are typically disseminated through 

participatory approaches, such as on-field or on-station trials, demonstrations, and farmers’ field days. 

However, actual awareness and adoption are shaped by a farmer’s individual characteristics (e.g., 

age, sex, education level, household size), farm-level attributes (e.g., land size, perceived soil fertility) 

and institutional factors (e.g., access to credit, training, extension services, and membership of farmer 

organisations). These determinants are consistent with both the diffusion of innovations theory and 

elements of the theory of planned behaviour (Ajzen 1991), which emphasises the role of attitudes, 

subjective norms and perceived behavioural control in shaping intention and behaviour. 

 

Attitudes and perceptions regarding SI practices also play a key role in influencing adoption 

decisions. Farmers who perceive SI practices as beneficial through increased productivity, income 

gains, cost efficiency and environmental sustainability are more likely to adopt them. In contrast, 

negative perceptions about complexity, cost or risks act as barriers. These psychosocial dimensions 

are informed by personal experiences, cultural norms and peer influence, again reinforcing the 

relevance of the theory of planned behaviour. Thus, promoting SI adoption requires more than just 

the availability of technologies; it involves targeted extension and education strategies that improve 

knowledge, shift perceptions and build capacity among smallholder farmers. Recognising the 
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heterogeneity of farmers and the complexity of behavioural change, the framework provides a 

realistic and evidence-based foundation for analysing the relationship between SI adoption and farm 

income in Dedza district. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Impact of SI practices on farm income  
Source: Adapted and modified from Neupane et al. (2002) 

 

2.3 Study area and sampling technique 

 

The study area was the Linthipe extension planning area (EPA) in Dedza district.1 The study area was 

selected because it represents a region where various agricultural technologies are actively practised, 

providing an ideal setting to assess the impacts of SI practices on farm income. A multistage sampling 

technique was employed to sample smallholder farmers in the study area. Smallholder farmers were 

selected using the probability proportional to size (PPS) method, which ensured that a larger number 

of respondents were drawn from villages with higher populations. The approach enhanced the 

 
1 In Malawi, the agricultural vertical administrative structure starts with the ministry as the top layer, then agricultural 

development divisions (ADD), which are divided into district agricultural offices (DAO). The DAOs are subdivided into 

extension planning areas (EPA). Finally, the EPAs are subdivided into sections. 
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representativeness of the sample. A well-structured sampling frame was used to systematically 

identify farmers, thereby minimising selection bias and ensuring sufficient data. The random 

sampling technique was employed to select both adopters and non-adopters in each village. The study 

employed the formula shown below to determine the sample size of smallholder farmers (Cochran 

1977).  

 

𝑛 =
𝑧2 𝑝(1−𝑝)

𝑒2             (2) 

 

In the equation above, n = the size of the sample, t = the z-value. taken as 1.96 (at 95%), p = 50% and 

represents the proportion of adopters of SI practices, and e = 8% and it denotes margin of error. 

 

𝑛 =
1.962∗0.5(1−0.5)

0.082  = 150 farmers         (3) 

 

Taking into account non-responses, which were 10%, and using 2 as a design effect, the sample size 

was adjusted as follows: 

 

150*1.1*2 = 330 smallholder farmers. 

 

Hence, the sample size increased to 330. The design effect was used to reduce the high variance of 

estimators likely to be caused by intra-cluster correlation due to clustering (Scott & Holt 1982). 

  

2.4 Empirical models 

 

2.4.1 Propensity score matching 
 

The impact of technology adoption varies depending on the method used to construct the 

counterfactual (Khandker et al. 2010). The fundamental challenge in impact evaluation is the 

counterfactual problem, which arises from the inability to observe the same individual in both the 

treatment (adoption) and control (non-adoption) states simultaneously. With impact evaluation 

techniques, the aim is to find what would have happened to that individual in the absence of the 

intervention. According to Ravallion (2008), this can best be achieved through the use of non-

experimental approaches such as PSM. 

 

In practice, adoption of agricultural technologies on the farm is rarely random (Khandker et al., 2010). 

Farmers self-select into adoption based on observable characteristics such as education, land size, 

access to credit and extension services. The non-random selection introduces selection bias, making 

simple comparisons between adopters and non-adopters potentially misleading. The strength of the 

PSM approach is that it relaxes the randomisation assumption by matching treated and untreated units 

with similar observable characteristics, thus mimicking a randomised experimental design.  

 

Furthermore, the study lacked baseline data, which ruled out the use of panel-based methods such as 

difference-in-differences. Given these data constraints, and the objective of estimating the average 

treatment effect on the treated (ATT), the PSM method was the most appropriate technique. It allowed 

for a statistical estimation of the income effect of adopting sustainable intensification (SI) practices 

by comparing adopters with a matched group of non-adopters who shared similar characteristics. This 

ensured that differences in outcomes could be attributed to the adoption of SI technologies, rather 

than pre-existing differences between the two groups of farmers. 
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The ATT was used to measure the impact of the adoption of SI practices on farm income. According 

to Khandker et al. (2010), the ATT that is attributed to adoption can be presented as shown below: 
 

𝐴𝑇𝑇𝑃𝑆𝑀 = 𝐸𝑃(𝑋){𝐸(𝑌1|𝐷 = 1, 𝑃(𝑋)) − 𝐸(𝑌0| 𝐷 = 0, 𝑃(𝑋))}     (4) 
 

In the equation above, the probability with respect to the distribution of the propensity scores 

estimated is represented by EP(X), Y1 is the outcome variable for the adopters of SI practices, while Y0 

is the outcome for the non-adopters of SI practices. Furthermore, D is the adoption variable and its 

binary; in other words, it takes the value 1 for adopters and 0 for non-adopters. The ATTPSM in the 

equation indicates the difference between the treated and the non-treated groups and depends on the 

estimates of the propensity scores, which are estimated on the covariates that are observed, 

hypothesised by vector X. 
 

3. Results and discussion 
 

3.1 Descriptive statistics of farm households 
 

Table 1 presents the demographic and socioeconomic characteristics of the sampled farm households. 

In terms of age, there were significant differences across all technology categories in mean age 

between adopters and non-adopters of SI practices. The overall mean ages for adopters and non-

adopters were 42 and 43, respectively. In terms of sex composition, the results revealed that male- 

headed households dominated across all the technology categories compared to female-headed 

households. The results further show statistically significant differences between adopters and non-

adopters of crop rotation and doubled-up legume technologies. 
 

The average household size for adopters and non-adopters was 4.7 and 4.4, respectively, which is not 

very different from the nation’s average household size of 4.3, as reported by NSO (2018). In terms 

of differences between adopters and non-adopters, Table 1 shows significant differences in household 

size between the adopters and non-adopters of hybrid seed and crop rotation, at the 5% and 10% level 

of significance, respectively. It is worth noting from Table 1 that adopters across all the technologies 
have a larger household size compared to non-adopters. 
 

The number of adults (more or less equal to 18 years) in the household entails the amount of household 

labour available (Manda et al. 2018). The average number of adults for adopters and non-adopters was 

2.46 and 2.17, respectively. Furthermore, the results reveal significant differences in the number of 

adults in the household between adopters and non-adopters. The results further show a large number of 

adults for adopters in the study area across all the technologies compared to non-adopters. The 

availability of land increases the likelihood of farmers adopting land-intensive technologies. Table 1 

shows that the average land size for adopters and non-adopters was 0.57 ha and 0.41 ha, respectively, 

and the difference was significant. The results are in line with the NSO (2018) report, which states that 

the average farm size for smallholder farmers in Malawi is less than one hectare. 
 

Non-farm activities help to ease farm activities by hiring labour for the farm. The results in Table 1 

reveal that, of the total number of adopters, 53.79% engaged in off-farm activities. Similarly, 65.78% 

of the total non-adopters were involved in non-farm activities. Overall, there is a significant difference 

between adopters and non-adopters in terms of proportions of farmers involved in non-farm activities. 

Livestock ownership is one of the major complementary sources of income in rural areas (Teklewold 

& Mekonnen 2017). Considering that some of the technologies, such as Nua45, doubled-up legume 

cultivation and improved maize seed, are input intensive, livestock ownership helps to reduce the 

financial constraints faced by small-scale farmers. The results in Table 1 show that, of the total 

number of adopters, 61.38% owned livestock.  
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Table 1: Descriptive statistics of the sampled households 
Variables SI technologies 

 Improved maize 

varieties 

Maize-legume 

intercropping 
Crop rotation  Doubled-up legume Nua45  Overall 

Continuous variables 

(mean) 

Adopters 

(102) 

Non-

adopters 

(230) 

Adopters 

(104) 

Non-

adopters 

(228) 

Adopters 

(100) 

Non-

adopters 

(232) 

Adopters 

(73) 

Non-

adopters 

(259) 

Adopters 

(64) 

Non-

adopters 

(268) 

Adopters 

(145) 

Non-

adopters 

(187) 

Age  
41.10 

(14.36)** 

43.6  

(16.75) 

42.60 

(14.73) 

43.03 

(16.75) 

41.10 

(13.47)** 

43.7 

(17.04) 

43.1  

(12.12) 

42.9 

(16.48) 

42.3 

(14.99) 

43.3 

(16.89) 

42.3 

(14.99)** 

43.3 

(16.69) 

Household size 
4.8 

(1.51)a** 

4.4 

(1.77) 

4.7 

(1.65) 

4.5 

(1.72) 

4.8 

(1.58)a** 

4.4 

(1.74) 

4.6 

(1.55) 

4.5 

(1.74) 

4.7 

(1.30) 

4.5 

(1.73) 

4.7 

(1.53) 

4.4 

(1.81) 

Number of adults  
2.41 

(0.09) 

2.24  

(0.07) 

2.41 

(0.09) 

2.24  

(0.07) 

2.50 

(0.10)a** 

2.21 

(0.04) 

2.42 

(0.11) 

2.26 

(0.62) 

2.29 

(0.12) 

2.30 

(0.06) 

2.46 

(0.08)a*** 

2.17 

(0.07) 

Land size (ha) 
0.54 

(0.67) 

0.48  

(0.24) 

0.83 

(1.01)a* 

0.38  

(0.73) 

0.45 

(0.11)a** 

0.23 

(0.03) 

0.49 

(0.30) 

0.31 

(0.91) 

0.63 

(0.46)a*** 

0.49 

(0.05) 

0.57 

(0.10)a* 

0.41 

(0.34) 

Distance to market  
1.87 

(0.20)a* 

2.66  

(0.27) 

2.45 

(0.45) 

2.40  

(0.20) 

2.53 

(0.47) 

2.36 

(0.20) 

2.84 

(0.61) 

2.29 

(0.19) 

3.36 

(1.12) 

2.31 

(0.18) 

2.20 

(0.33) 

2.58 

(0.24) 

Contacts with extension 

agents/year 

4.84 

(0.01)a*** 

2.12  

(0.24) 

4.72 

(0.61)a*** 

2.15  

(0.23) 

5.57 

(0.66)a*** 

1.83 

(0.20) 

5.77 

(0.70)a*** 

2.16 

(0.25) 

5.76 

(1.06)a*** 

2.16 

(0.26) 

4.66 

(0.50)a*** 

1.63 

(0.20) 

Dummy variables (percentage)            

Gender (male) 79.41 72.61 77.88 73.25 83 71.12b** 82.19 72.59b* 70.59 75.17 77.93 72.19 

Off-farm activities (yes) 53.92 63.48 50.96 64.91b** 62 59.91 63.01 59.85 58.82 60.74 53.79 65.78b** 

Livestock (yes) 61.76 50.87b* 67.31 48.25b*** 68 48.28b*** 65.75 50.97b** 76.47 51.68b*** 61.38 48.66b** 

Credit access (yes) 38.24 34.35 37.5 34.65 42 32.76 38.36 34.75 61.76 32.55 39.31 32.62 

Training in SI practices 

(yes) 
32.35 13.91b*** 25.96 16.67b** 36 12.5b*** 52.05 10.42b*** 41.18 17.11b*** 68.97 10.70b** 

Access to FISP (yes) 21.57* 15.65 21.15 15.79* 29 12.5 31.51 13.51 32.35 15.77 22.07 13.90 

Notes: Figures in parentheses are standard deviation of continuous variables; a indicates t-test, b indicates chi-square test; * = significant at 10% (p < 0.1), ** = significant at 5% 

(p < 0.05), and *** = significant at 1% (p < 0.01). 
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Access to the farm input subsidy programme (FISP) entails government efforts to support rural farm 

households to easily have access to productive resources. Table 1 shows that very few farm 

households in the study area are beneficiaries of FISP. Across all the technologies, adopters benefitted 

more from FISP compared to non-adopters. With regard to the number of contacts with agricultural 

extension agents, the results reveal that adopters of different technologies have more contacts with 

agricultural extension agents (4.66) than non-adopters (1.63).  

 

The results in Table 1 indicate that there are significant differences in terms of access to training on 

sustainable intensification (SI) practices between adopters and non-adopters. Specifically, adopters 

reported significantly higher access to training across all the SI technologies considered in the study. 

Training equips farmers with the necessary skills and knowledge to effectively implement and 

manage SI technologies, enabling them to make informed decisions that enhance productivity and 

sustainability (Tanti et al. 2022).  

 

3.2 Effect of adoption of SI technologies on farm income 

 

3.2.1 Choosing a matching algorithm 

 

Choosing a matching algorithm involves the selection of the best-matching algorithm to balance the 

distribution of covariates between adopters and non-adopters of sustainable intensification practices. 

Following Haji and Legesse (2017), the study tested commonly used the matching estimators of 

nearest neighbour, radius and kernel matching, as shown in Table 2.  

 

The best matching algorithm is the one that reduces standardised mean bias, produces a large number 

of matched sample size, returns small pseudo-R2 and produces a large number of insignificant 

variables after matching (Li 2012). It is apparent from Table 2 that kernel matching satisfies the 

proposed criterion at a bandwidth of 0.03, and it was therefore used to estimate the average treatment 

effect on the treated of the adoption of SI technologies. The kernel matching indicated a small pseudo- 

R2, a large, matched sample size, a large number of insignificant variables after matching and a small 

standardised mean bias, as shown in Table 2. 

 

Table 2: Balancing of propensity scores 

Algorithm 
Matching 

parameters 

Number of insignificant 

variables after matching 
Pseudo-R2 

Matched 

sample size 

Mean 

bias 

Kernel 

Bandwidth 0.01 16 0.017 330 5.1 

Bandwidth 0.03 16 0.007 330 3.5 

Bandwidth 0.25 16 0.015 330 4.1 

Nearest neighbour 

Integer 4 16 0.014 330 5.2 

Integer 6 16 0.012 330 4.4 

Integer 9 16 0.011 330 4.7 

Calliper matching 

Radius 0.2 16 0.026 330 7.5 

Radius 0.3 16 0.026 330 7.5 

Radius 0.4 16 0.026 330 7.5 

 

3.2.2 Matching quality 

 

After matching, the quality of matching achieved was assessed to ensure that every household with 

the same X values had an equal positive chance of being both participant and non-participant 

(Caliendo & Bonn 2008). This forms the verification of the common support or overlap assumption. 

Figure 2 shows the distribution of the estimated propensity scores and overlap between adopters and 

non-adopters of SI technologies. 
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Visual inspection of the graph shows that common support was achieved, as there is a sizeable overlap 

in the distribution of estimated scores between SI technologies adopters and non-adopters. It is also 

clear that there are no sizeable differences between the maximum and minimum values of the 

propensity score density distributions for both groups.  

 

 
Figure 2: Matching quality 

 

3.2.3 Estimating the average treatment effect on the treated (ATT) 

 

After satisfying the common support assumption, the study calculated the average treatment effect on 

the treated. The difference in the outcome variable is now attributed to the adoption of SI 

technologies, since adopters and non-adopters have been matched in all observable covariates (Haji 

& Legesse 2017). The number of sales of farm produce was used as a proxy for farm income and was 

an outcome variable of this study.  

 

Before matching, the average farm income for the adopters of SI technologies was MWK2 62 384.88 

(US$ 85.32), while the average farm income for non-adopters was MWK 26 966.34 (US$ 36.88), 

with a difference of MWK 35 418.54 (US$ 48.44). After matching, the average amount of farm 

income for SI adopters was MWK 62 505.60 (US$ 85.48), while that for non-adopters was MWK 

27 081.28 (US$ 37.04). The difference of MWK 35 424.32 (US$ 48.45) after matching is the average 

treatment effect on the treated (ATT), and this was significant at the 1% significance level, as shown 

in Table 3. 

 

Table 3: Estimating the causal effect of adoption of SI technologies on farm income 
Outcome Sample Treated Controls Difference Std. error t-value 

Farm income Unmatched 62 384.88 26 966.34 35 418.54 9 904.21 3.58*** 

 ATT 62 505.60  27 081.28 35 424.32 11 131.75 3.18*** 

 
2 Malawian kwacha 

0 .2 .4 .6 .8
Propensity Score

Untreated Treated: On support

Treated: Off support



AfJARE Vol 20 No 2 (2025) pp 207–219  Maviko et al.  

 
 

217 

The implication is that the adopters of SI technologies had higher farm income compared to non-

adopters, and the difference is ascribed to their participation status. Therefore, the null hypothesis – 

that adoption of SI technologies by smallholder farmers does not influence farm income – is rejected 

and the study concludes that the adoption of SI technologies has a positive impact on farm income. 

 

3.2.4 Sensitivity analysis 

 

Estimates in impact studies are prone to unobserved heterogeneity, hence the need for sensitivity 

analysis (Khandker et al. 2010). The sensitivity analysis answers the question, “what would the 

unmeasured covariates have to be like to alter the findings of the study?” Table 4 shows that the mean 

standardised bias (SB) was 10.9% before matching, and it was reduced to 3.5% after matching. The 

67.89% reduction in mean bias shows the strong balancing power of the estimation.  

 

In addition, the mean bias of 3.5% is within the acceptable range of 3% to 5% bias after matching, as 

recommended by Caliendo and Bonn (2008). The common support restriction was imposed on the 

observations during matching. This involved dropping the treatment observations of which the p-

score was higher than the maximum or less than the minimum p-score of the controls (Michaleck 

2012; Haji & Legesse 2017). Consequently, only one case was lost due to common support 

imposition, representing a 0.3% loss, which is reasonably low (Michaleck 2012). 

 

The study followed Rosenbaum (2002) and estimated sensitivity analysis through the rbounds 

package in Stata. The results in Table 4 show that the gamma values ranged from 1.3 to 2.0. A gamma 

value of 1 indicates no hidden bias (unobserved heterogeneity). The results therefore mean that the 

unobserved variables should have to increase the odds ratio of adoption of SI technologies 30% to 

100% before they would affect the estimated effect of participation. As such, the results of this study 

are robust, despite the presence of unobserved heterogeneity (Michaleck 2012). 

 

Table 4: Indicators of matching quality and robustness of results 
Outcome variable SB-unmatched sample SB-matched sample Cases lost Pseudo-R2 Critical values of gamma (Г) 

Farm income 10.9 3.5 1 0.007 1.3–2.0 

 

3.2.5 Limitations of the study 

 

While the study provides important insights into the impact of sustainable intensification (SI) 

practices on smallholder farmers’ income, it is not without its limitations. The analysis relied on cross-

sectional data, which limits the ability to establish causal relationships over time. Future studies 

should consider using panel data to capture dynamic effects and control for time-varying unobserved 

heterogeneity. Furthermore, although propensity score matching (PSM) was employed to minimise 

selection bias, it cannot completely eliminate the influence of unobserved variables that may affect 

both the likelihood of adopting SI and farm income. Future research could apply more robust quasi-

experimental methods, such as difference-in-differences or instrumental variable approaches. 

 

4. Conclusion 

 

The study examined the effect of sustainable intensification (SI) practices on farm income in Dedza 

district, Malawi using a propensity score matching (PSM) model. The results reveal that the adoption 

of SI practices led to a significant increase in farm income, of MWK 35 424.32 (US$ 48.45) per 0.57 

hectares in 2020, underscoring the potential of these practices to boost the livelihoods of resource-
constrained farmers. These findings affirm that SI technologies are not only viable pathways to 
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improving agricultural productivity, but also offer a critical tool for building climate resilience and 

reducing rural poverty among rural farm households.  

 

Building on the findings, it therefore is important to scale up the adoption of sustainable 

intensification (SI) practices by increasing investment in agricultural extension services. This can be 

done by recruiting and training more extension officers, particularly in rural areas. This will improve 

farmer access to timely and practical knowledge on SI technologies. Secondly, there is need develop 

and scale up affordable credit schemes tailored to smallholder farmers, including input loans and 

microfinance packages that support the purchase of improved seed and other SI-related inputs. In 

addition, both input and output market linkages should be strengthened by establishing farmer 

cooperatives and contract farming arrangements to enable farmers to access quality inputs at fair 

prices and secure reliable markets for their produce. 

 

This study has implications for other agrarian societies in sub-Saharan Africa that face similar 

structural challenges, including land degradation, small farm sizes, erratic weather patterns driven by 

climate change, and limited access to modern agricultural technologies. In such contexts, sustainable 

intensification (SI) presents a practical and scalable approach to sustainably enhance agricultural 

productivity without necessitating the expansion of cultivated land. The positive income effects 

observed in Malawi suggest that, with appropriate support mechanisms, SI practices can similarly 

transform smallholder agriculture in other sub-Saharan countries facing comparable constraints.  
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